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ABSTRACT OF THE DISSERTATION

Self-Protection of Android Systems from Inter-Component Communication Attacks

By

Mahmoud M. Hammad

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2018

Associate Professor Sam Malek, Chair

Android is widely used for the development and deployment of autonomous and smart

systems, including software targeted for IoT and mobile devices. Security of such systems is

an increasingly important concern. Although Android is the predominant mobile platform

[26], it is also the most targeted platform by malware authors [24, 25] resulting in millions

of malicious apps distributed in numerous app stores [47]. Android relies on a permission

model to secure the system’s resources and apps. In Android, since the permissions are

granted at the granularity of apps, and all components in an app inherit those permissions,

an app’s components are over-privileged, i.e., components are granted more privileges than

they actually need. Systematic violation of least-privilege principle in Android is the root

cause of many types of Inter-Component Communication (ICC) attacks that can lead to

serious security and privacy risks [89, 106, 135, 173].

Due to the increasing use of code obfuscation in Android apps, the current security mechanisms

for Android apps, both static and dynamic analysis approaches, are insufficient for detection

and prevention of the increasingly dynamic and sophisticated security attacks. Static analysis

approaches suffer from false positives whereas dynamic analysis approaches suffer from

false negatives. Moreover, they all lack the ability to efficiently analyze systems with

incremental changes—such as adding/removing apps, granting/revoking permissions, and

xii



dynamic components’ communications. Each time the system changes, the entire analysis

needs to be repeated, making the existing approaches inefficient for practical use.

To mitigate these issues, this dissertation presents a novel self-protecting Android software

system that automatically determines and continuously maintains the least-privilege architec-

ture of an Android system, incrementally and efficiently analyzes its security posture, and

dynamically enforces the maintained least-privilege architecture at runtime. The approach,

entitled SALMA, protects the system against ICC attacks at all times in spite of changes at

runtime.

The least-privilege architecture limits the privileges granted to apps without the need to

modify them or breaking their functionalities. Static program analysis techniques have been

utilized to extract the exact privileges each component needs for providing its functionality.

A Multiple-Domain Matrix representation of the system’s least-privilege architecture is then

kept in sync with the running system to reason about it at runtime. Every time the system

changes, SALMA determines (1) the impacted part of the system, and (2) the subset of the

security analyses that need to be performed, thereby greatly improving the performance and

the scalability of the approach.

All conducted experiments on hundreds of real-world apps corroborate the scalability and

efficiency of the proposed approach in reducing the attack surface of Android systems as well

as its ability to detect and prevent security attacks at runtime with minimal disruption.
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Chapter 1

Introduction

Android is widely used for the development and deployment of autonomous and smart

software systems, including software intended for execution on a variety of mobile devices, as

well as software targeted for Internet of Things (IoT) settings, such as smart homes. Security

of such systems is an increasingly important concern. Reusability is a major reason behind

the meteoric rise in the popularity of the Android platform [26] and the increasing number of

apps [48]. To develop rich apps, Android promotes reusability of (1) information and services

provided by third-party apps, through its flexible Inter-Component Communication (ICC)

model, and (2) sensitive resources protected by a permission-based model.

Permissions form the foundation of security in Android. Android relies on a permission-based

model for controlling the resources that each app is allowed to access. Permissions are often

granted to an app at the discretion of end user, who makes a decision based on its perceived

trustworthiness and expected functionality. Android’s permission-based access control model,

however, has shown to be ineffective in protecting system resources and apps from security

attacks [89]. In Android, all components of an Android app inherit the permissions granted

to the app, regardless of whether they need those permissions or not. As a result, a malicious

1



component inside an app, such as a third-party library, can leverage privileges meant for

other components for nefarious purposes [173]. Moreover, by default, a component in Android

has significant leeway in terms of the components it can communicate with, both within and

outside of its parent app.

The over-privileged nature of components in Android has become the main attack vector for

Android apps, which can lead to serious security and privacy risks [89, 106, 135, 173]. These

kinds of attacks cannot be prevented by the platform at the moment, as they do not violate

the security mechanisms supplied by Android.

Prior research efforts have proposed various solutions to help address certain instances of

component-level ICC attacks. Some of the proposed solutions have focused on isolating

specific type of component-level threats, caused by for example advertisement [167, 199]

or JNI libraries [205]; such approaches are narrowly targeted, and thus, inappropriate for

applying comprehensively to other types of component-level threats. Others have proposed

component-level permission assignment for third-party components in an app [212, 195], yet

they are incapable of controlling communications among components. They also often require

application modification or developer intervention, significantly hindering their adoption in

practice. Therefore, the current state-of-the-art security mechanisms for Android apps, both

static and dynamic analysis approaches, as well as the current state-of-the-practice security

mechanisms for Android apps, i.e., the commercial anti-malware products, are all insufficient

for detecting and preventing the increasingly sophisticated security attacks.

Static analysis approaches suffer from false positives due to their over-approximation of

the analyzed apps, e.g., producing warnings for vulnerabilities that are not executable at

runtime. On the other hand, dynamic analysis approaches suffer from false negatives due to

the reachability problem, where vulnerabilities are missed due to inputs that fail to reach the

vulnerable code. Not to mention, the existing commercial anti-malware products can be easily

defeated, as we will show in Chapter 4, using code obfuscation. Code obfuscation transforms
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a code into a form that is difficult to analyze and reverse engineer. These transformations

change the syntax of code but not their semantics [93].

Moreover, due to the complex and dynamic nature of Android systems (e.g., adding a new

app, removing an existing app, granting/revoking a permission, and dynamic class loading),

their security posture continuously changes over time. Simply repeating the entire security

analysis of an Android system, either statically or dynamically, every time the system changes

is prohibitively expensive for practical use.

To overcome the shortcomings of the current approaches, this dissertation proposes SALMA,

a fully automated and novel self-protecting Android software system that (1) automatically

determines and enforces the least-privilege architecture (LP architecture) of an Android system,

(2) continuously monitors the running Android system, (3) incrementally and efficiently

analyzes the security posture of the system, and (4) dynamically enforces security policies

to prevent security attacks at runtime. An LP architecture is one in which the components

are only granted the privileges that they require for providing their functionality [207]. An

LP architecture, thus, reduces the risk of an Android system being compromised by limiting

its attacks surface. In addition, when a component is compromised, the impact is localized

within the scope of that component. A smaller attack surface also facilitates both manual

and automated means of inspecting the system’s security attributes.

Establishing the least-privilege architecture is quite challenging as it demands mediation of

all conceivable channels through which a component may interact with components within

and outside its parent app, as well as the underlying system resources. SALMA leverages

static program analysis to automatically identify the architectural elements comprising

an Android system, as well as the inter-component communication and resource-access

privileges each component needs to provide its functionality. It then derives the initial

LP architecture, i.e., a model, for the system. SALMA models the LP architecture of an

Android system as a Multiple-Domain-Matrix (MDM) [149]—which provides an elegant, yet

3



compact, representation of all relationships among principal elements, such as components

and permissions, in a system. SALMA further allows a security expert to modify the initial

LP architecture as needed to establish the proper privileges for each component. Finally,

SALMA enforces automatically obtained or expert-supplied LP architecture at runtime,

thus ensuring components are not able to obtain more privileges than that prescribed by the

architecture.

Next, SALMA monitors the running system to keep the model synchronized with the running

system. Whenever the model changes, SALMA determines (1) the impacted part of the

system, and (2) the required security analyses that need to be performed. Finally, SALMA

adjusts security policies and enforces them at runtime, thus ensuring the system is safe and

protected at all times. Our implementation of the MDM provides a flexible way to load and

analyze parts of the system, improving the scalability and efficiency of the overall approach.

By providing an efficient least-privilege determination process associated with a thorough

enforcement system, SALMA allows users to focus their analysis efforts on a very narrowed

set of interactions in the architecture. This is especially valuable, since at the scale of a

single device, the state-of-the-art inter-component communication analysis tools produce an

enormous number of potential links between message-passing locations and possible message

targets, making manual analysis required to confirm any potential threat rather tedious and

error-prone.

SALMA can be used to limit the levels of access available to an app and its components and

protect Android systems without modification of the apps’ implementation logic, allowing

our approach to be applied to all existing Android apps.

Our evaluation of SALMA using hundreds of real-world apps corroborates its ability in

significantly reducing the attack surface of Android systems as well as its efficiency and

scalability in analyzing evolving Android systems with minimal disruption to apps and
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their services while thwarting security threats to keep the system protected at all times.

SALMA achieves 94%-99% reduction of attack surface, 70%-84% greater detection of attacks

than state-of-the-art approaches, and 45%-85% greater prevention of attacks than those

approaches.

1.1 Dissertation Structure

The rest of this dissertation is organized as follows. Chapter 2 provides a background on

self-adaptive software systems, Android framework and its privilege management scheme,

and the ICC security attacks targeting the Android platform which SALMA detects and

mitigates at runtime. Chapter 3 presents the research problem and the scope of this thesis.

In Chapter 4, we show, via a large-scale empirical study, the effect of code obfuscation on

Android apps and anti-malware products. Chapter 5 presents an Android system to motivate

the research and illustrate the approach. Chapter 6 provides a detail description of SALMA

and its implementation. The evaluation results of SALMA are presented in Chapter 7.

Chapter 8 discusses the related literature effort in light of SALMA. Finally, Chapter 9

concludes this dissertation with discussion of the contributions, limitations and the future

work.

The research presented in this dissertation has been published in the following venues:

• Mahmoud Hammad, Hamid Bagheri, and Sam Malek. Self-Protection of Android

Systems from Inter-Component Communication Attacks The 33rd IEEE/ACM In-

ternational Conference on Automated Software Engineering (ASE), September 2018,

Montpellier, France.

• Mahmoud Hammad, Joshua Garcia, and Sam Malek. A Large-Scale Empirical Study

on the Effects of Code Obfuscations on Android Apps and Anti-Malware Products. The

5



40th International Conference of Software Engineering (ICSE), May 2018, Gothenburg,

Sweden.

• Mahmoud Hammad, Hamid Bagheri, and Sam Malek. DELDroid: Determination and

Enforcement of Least-Privilege Architecture in Android. Accepted with revision to the

Journal of Systems and Software (JSS). Submitted on October 2017

• Mahmoud Hammad, Hamid Bagheri, and Sam Malek. DELDroid: Determination

and Enforcement of Least-Privilege Architecture in Android. University of California,

Irvine, Institute for Software Research, technical report # UCI-ISR-18-2, April 2018

• Joshua Garcia, Mahmoud Hammad, and Sam Malek. Lightweight, Obfuscation-Resilient

Detection and Family Identification of Android Malware. ACM Transactions on Software

Engineering and Methodology (TOSEM). Volume 26, No. 3, Article 11 (January 2018)

• Joshua Garcia, Mahmoud Hammad, and Sam Malek. Lightweight, Obfuscation-Resilient

Detection and Family Identification of Android Malware. International Conference of

Software Engineering (ICSE), Journal-first track, May 2018, Gothenburg, Sweden.

• Joshua Garcia, Mahmoud Hammad, Negar Ghorbani, and Sam Malek. Automatic

Generation of Inter-Component Communication Exploits for Android Applications.

European Software Engineering Conference and ACM SIGSOFT Symposium on the

Foundations of Software Engineering (ESEC/FSE), September 2017, Paderborn, Ger-

many.

• Mahmoud Hammad, Hamid Bagheri, and Sam Malek. Determination and Enforcement

of Least-Privilege Architecture in Android. International Conference of Software

Architecture (ICSA 2017), Gothenburg, Sweden, April 2017.
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Chapter 2

Background and Research Motivation

To help the reader follow the discussions that ensue in this dissertation, this chapter provides

a brief overview of the self-adaptive software systems, Android framework, the over-privileged

nature of Android’s access control model, and the ICC security attacks that are threatening

the Android platform.

2.1 Self-Adaptive Software System

Over the past decade, researchers and software industrial organizations have invested signifi-

cant resources on creating software ecosystems [132, 186, 196, 77, 155]. A software ecosystem

includes a platform for constructing applications—similar to product lines—however, differ

in scope due to the intent of releasing the platform for third-party development outside of a

single organization’s boundaries [77].

From a more human- or process-oriented perspective, ecosystems may also include the

developers themselves, and the community of domain experts and users [77]. Application

frameworks are key enablers of software ecosystems. By providing a variety of APIs, libraries,
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and services to third-party developers, application frameworks facilitate the development of

new features in the form of apps or plug-ins on top of a platform. Sharing a platform beyond

a single organization’s boundaries further expands the market share of the organization(s)

responsible for the platform at the heart of an ecosystem. Encouraging and supporting an

ecosystem also enables customizability (e.g., new features in the form of new applications or

plug-ins built on top of a platform).

Android is currently the dominant mobile platform accounting for 85% of the market share [9].

Millions of apps are built on top of the Android platform [48], resulting in a large dynamic

software ecosystem, where apps are constantly being added or removed to the repositories

making these apps available to users.

Given that each user has nearly 100 apps on a device [19], a single Android device can be

considered as a rather complex software system, involving apps from many organizations

all running on a single platform. Such a system is highly dynamic, involving a variety of

software (e.g., messages being sent across apps) and hardware events (e.g., sensor events).

Each of these events can be occurring under different contexts (e.g., while the phone screen

is off, while the battery is low, etc.). Managing or adapting such a system is challenging

due to the varying contexts and the high dynamism. Furthermore, such a system with a

high number of apps, some of which may be of questionable provenance, exposes a user to a

variety of security vulnerabilities.

Ideally, such a system would be self-protected, where the system is provided with policies

that specify and ensure that the system achieves specific security objectives. For example, a

user may wish to ensure that her location is never sent outside of the phone when the device’s

screen is locked. Self-protecting software, similar to other types of self-* software, relies

upon the principle of separation of concerns [131]. Specifically, such a system, as depicted in

Figure 2.1, separates adaptation logic from application-specific business logic to achieve its

objectives at runtime.
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Figure 2.1: A general framework of a self-adaptive software system implementing the MAPE-K
control loop.

The adaptation logic realizes a feedback control loop to manage the system. The IBM MAPE-

K control loop [139] is the most widely implemented feedback control loop. MAPE-K, as

shown in Figure 2.1, consists of four components and a knowledge component. The Knowledge

contains an abstract representation of the system—often in the form of a component-based

architectural model comprising a system’s components, their interactions and dependencies.

The Monitor component observes the system and keeps the model synchronized with the

running system. The Analyzer component assesses the system for security threats. The

Planner component determines the best security policies, a.k.a. adaptation tactics, to be

enforced at runtime by the Executor component.
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2.2 Android Foundations

2.2.1 Android Framework

Figure 2.2 depicts the Android platform stack architecture 1. Android platform includes a full

Linux OS based on the ARM processor, Hardware Abstraction Layer (HAL) which provides

standard interfaces that expose device hardware capabilities to the higher-level, system

libraries, framework Application Program Interfaces (APIs), and a suite of pre-installed

applications.

Android applications (apps) are distributed as an Android Package Kit files (APKs). An

APK file is a zipped file that is mainly written in the Java programming language by using a

rich collection of APIs provided by the Android Software Development Kit (SDK). Each APK

file contains a manifest file, resources (e.g., images), and the app’s bytecode. An app’s code is

compiled into Dalvik EXecutable (DEX ) format, which can be executed on a customized Java

Virtual Machine (JVM). There are two JVMs that can execute the DEX format: Android

Runtime (ART), introduced in Android version 5 (Lollipop); and Dalvik Virtual Machine

(DVM), for older versions.

2.2.2 Application Configuration

Each Android APK includes a mandatory configuration file, called manifest. It specifies,

among other things, the principal components that constitute the app, including their types

and capabilities, as well as required and enforce permissions. The manifest file values are

bound to the app at compile time, and cannot be changed afterwards, unless the app is

recompiled.

1Figure 2.2 is taken from the Android documentation [1]
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Figure 2.2: The Android software stack taken from the Android documentation [1].
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2.2.3 Application Components

Components are basic logical building blocks of apps. Each component can be invoked

individually, either by its embodying app or by the system, upon permitted requests from

other apps. Android defines four types of components: (1) Activity components provide the

basis of the Android user interface. Each app may have multiple Activities representing

different screens of the app to the user. (2) Service components provide background processing

capabilities, and do not provide any user interface. Playing a music and downloading a

file while a user interacts with another app are examples of operations that may run as a

Service. (3) Broadcast Receiver components respond asynchronously to system-wide message

broadcasts. A receiver component typically acts as a gateway to other components, and passes

on messages to Activities or Services to handle them. (4) Content Provider components

provide database capabilities to other components. Such databases can be used for both

intra-app data persistence as well as sharing data across apps. Each component can declare

a set of provided interfaces which can be invoked by other components.

2.2.4 Inter-Component Communication

Inter-component communication (ICC) in Android is mainly achieved either by sending

Intents or using Unified Resource Identifiers (URIs). An Intent message is an event for an

action to be performed along with the data that supports that action. Component capabilities

are then specified as a set of Intent Filters that represent the kinds of requests handled by

a given component. Intent Filters are the provided interfaces of a component. Component

invocations come in different flavors, e.g., explicit or implicit, intra- or inter-apps, etc. An

explicit Intent is delivered to the target component specified in the Intent, whereas an implicit

Intent is delivered to a component if the action specified in the Intent matches that specified
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in the component’s Intent Filter. URIs are used to access or manipulate the encapsulated

data in Content Providers, the database components in Android apps.

Android’s ICC allows for late run-time binding between components in the same or different

apps, where the calls are not explicit in the code, rather made possible through event

messaging, a key property of event-driven systems.

2.2.5 Android Permissions

Permissions are the cornerstone for the Android security model. Android applies a permission-

based model to protect sensitive resources, both system resources and application resources,

that each app is allowed to access.

The required permissions stated in the app manifest enable secure access to sensitive resources

as well as cross-application interactions. Starting from Android version 6 or Marshmallow,

API level 23, Google changed the permission management system in Android from static to

dynamic which allows users to grant or revoke permissions at runtime. Before Android version

6, the user has to consent to grant all requested permissions prior to installation. Should the

user refuse granting the requested permissions to an app, the app installation is canceled.

Besides required permissions, the app manifest may also include enforced permissions that

other apps must have in order to interact with this app. In addition to built-in permissions

provided by the Android system to protect various system resources, any Android app can

also define its own permissions for the purpose of self-protection.
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2.3 Android Access Control Model

There are two kinds of privileges a component has: inter-component communication (ICC)

privilege, allowing a component to communicate with other components in the same or

different app, and resource access privilege, allowing a component to access the system

resources, such as GPS, camera, telephony, etc. Android manages both types of privilege at

the app level, meaning that the permissions are granted/revoked at the level of an app and

inherited by all components in that app. This causes two kinds of over-privileges, discussed

next.

2.3.1 Over-Privileged Resource Access

Android contains a plethora of sensitive system resources (e.g., GPS, camera, account manager,

power manager) accessed by obtaining a handle to a system-level, long-running service (e.g.,

location service, camera service, account service, power manager service). System services

are launched by com.android.server.SystemServer service, which is started at the boot

time of the Android operating system. To use a system service, a component should have the

appropriate permission that guards the service. For example, to track the user’s location,

a component needs to obtain a handle to the location service, which requires the location

permission (either ACCESS COARSE LOCATION or ACCESS FINE LOCATION).

The permissions stated in the app manifest enable secure access to sensitive resources.

However, a permission granted to an app transfers to all of the components in the app.

Android’s coarse-grained permission model violates the principle of least-privilege [84, 202],

as often not all components of an app need access to the same sensitive resources. The

shortcomings of Android’s permission model have been widely discussed in the literature [201,
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107, 101], and shown to be the root cause of various security attacks, most notably privilege

escalation [99, 111].

2.3.2 Over-Privileged Inter-Component Communication

The ICC mechanism in the Android framework provides a flexible component-based devel-

opment. However, this mechanism gives the components more communication privileges

than they actually need and hence violates the principle of least-privilege. Although Android

documentation affirms that the sandboxing mechanism, process isolation, is the realization of

the least-privilege principle [41], this indicates that the Android security mechanisms treat

apps as the minimum security entities and cannot distinguish between their components.

Specifically, Android’s ICC mechanism leads to over-privileged architectures, where com-

ponents needlessly have the ability to use URIs or send Intent messages to invoke services

of many other components within and outside their parent apps, and receive a variety of

Intent messages implicitly exchanged in the system. A component is allowed to communicate

with (1) all components in its parent app, (2) protected components in other apps as long

as its parent app has the required permissions, and (3) any public (exported) component in

other apps. A component is public if its VISIBLE attribute is set to true in the manifest

file or declares at least one Intent Filter. Many developers are not aware of the fact that

by specifying an Intent Filter for a component, Android by default makes that component

public, thus allowing components from other apps to invoke its interfaces [89]. Inter-app

communication (IAC) privileges are thus often granted implicitly. Finally, a component does

not require a permission to specify an Intent Filter with arbitrary action, thereby allowing

that component to receive all implicit Intents exchanged in the system with the specified

action.
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2.4 Android Security Attacks

The over-privileged nature of components in Android caused by the Android ICC interaction

mechanism and the current permission model of Android is the root cause of many security

vulnerabilities. It has become a vulnerable attack surface of an Android system which

threatens user privacy and has affected millions of users [47]. These ICC attacks are widely

discussed in the literature [89, 137, 102, 221, 201, 111, 110, 106, 101, 83, 135].

ICC attacks are security risks facilitated by (1) incorrectly or maliciously using the message-

passing system in Android or (2) misusing the permissions in Android. The malicious code

to conduct these ICC attacks can be part of an app’s implementation logic or even, in a more

complicated scenarios, it can be obfuscated or downloaded at runtime using dynamic class

loading feature in Android [173]. SALMA provides self-protection against these ICC attacks.

This section briefly describes these attacks.

2.4.1 Unauthorized Intent Receipt

In this attack, a malicious component intercepts an implicit Intent by declaring an Intent

Filter that matches the sent Intent [89, 137]. In such an attack, a malicious component can

access all enclosed data in the intercepted Intent and, possibly perform a phishing attack [51].

There are three different forms of this attack based on the type of the receiver component, i.e.,

the malicious component [89]: (1) Broadcast theft in which the receiver component can read

the content of broadcast Intents without interrupting the broadcast, (2) Activity hijacking in

which the receiver component is launched instead of a legitimate Activity, and (3) Service

hijacking in which the receiver component is bound to/started instead of a legitimate one.

In case a hijacking attack is successful, the sender component may also be a victim of false
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response attack [89, 137] in which the receiver component can return a malicious result to

the sender component.

As a concrete example of unauthorized Intent receipt attack, consider a legitimate application

that processes financial payments. When a user clicks on a “Pay” button, the application

sends an implicit Intent to start another Activity that processes the payment. If a malicious

Activity hijacks the implicit Intent, then the attacker could receive sensitive information

from the user (e.g., card number, billing address, and payment amount). In this Activity

hijacking attack, the malicious component can also perform a phishing attack to get even

more information from the user after stealing the interface of the legitimate Activity. Phishing

attacks cannot be easily determined by users since the Android UI does not specify the

currently running application.

2.4.2 Intent Spoofing

In such an attack, a malicious component can communicate with an exported component

that is not expecting such communication [137, 89]. If a victim component blindly trusts

the received Intent, the malicious component can cause the victim component to perform

undesirable actions [115].

There are three different forms of the Intent spoofing attack based on the type of the receiver

component, i.e., the victim component [89]: (1) Malicious Broadcast injection in which

the malicious component can send a malicious broadcast Intent to an exported Broadcast

Receiver. Since most Broadcast Receivers act as gateways to other components, and pass

messages to Activities and Services [69], the malicious Intent can propagate throughout an

app. A more risky scenario can happen if the Broadcast Receiver is registered to receive

protected broadcast Intents that only the system can send. In such a scenario, the sender

component can send an explicit Intent to the receiver component. If the receiver component
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blindly trusts the received Intent without checking the Intent action, it may perform a task

that only the system is supposed to trigger. (2) Malicious Activity launch, analogous to

cross-site request forgeries in websites [74], occurs when a victim component is launched by a

malicious component that it does not expect communication from. Since Activities provide

GUI interfaces, this attack can be an annoyance to the users. Successfully launching the

receiver Activity can cause it to change data in the background using the data enclosed in

the malicious Intent sent by the malicious component. (3) Malicious Service launch is similar

to malicious Activity launch except that the interaction between the sender and the receiver

components occurs in the background. If a malicious Activity launch or a malicious Service

launch attack is successful, the receiver component may return sensitive information to the

malicious component.

As a concrete example of Intent spoofing attack, consider an application that contains an

advertisement (ad) library. Once a user clicks on an ad, the application sends an implicit

Intent to an Activity, referred to as AdActivity here, which displays details of that ad on a web

page. In this case, a malicious component can exploit an Intent spoofing attack by sending a

carefully crafted implicit Intent to the AdActivity. If the AdActivity does not properly handle

the received implicit Intent, the malicious component can deny the service of AdActivity

and crash its app resulting in an inter-process denial-of-service (IDOS) attack. Moreover,

if the AdActivity blindly trusts the incoming implicit Intent, a malicious component can

redirect the user to a web page with malicious JavaScript code resulting in a cross-application

scripting (XAS) attack. For more descriptions of these kinds of Intent spoofing attacks, we

refer the interested readers to our paper [115].
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2.4.3 Privilege Escalation

This attack allows a malicious component to indirectly perform a privileged task [111, 83]. In

this attack, if a vulnerable component possesses a permission without appropriately protecting

its interface, a malicious component can perform a privileged task, such as sending a text

message or tracking the location of a user, by interacting with that vulnerable component.

It is worth mentioning that, this security attack is not exploitable unless the vulnerable app is

granted the permission that is unsafely used. Therefore, if the vulnerable app is not granted

that permission, then the privileged-task is not reachable.

2.4.4 Identical Custom Permission

As we mentioned in Section 2.2, any Android app can also define its own permissions and use

them to protect its components. Each permission must define a name and a protection level,

where each level affects the extent to which a permission can be granted or revoked. The

notable protection levels for this chapter are Normal and Signature. A Normal permission is

automatically granted to apps that request them without asking for the user’s approval and

they can not be revoked at runtime. A Signature permission is granted to applications that

are signed with the same certificate as the app that declared the permission.

The custom permission model of Android contains a vulnerability that is rooted in its design:

”if two apps define the same custom permission, whichever app is installed first is the one

whose definition is used” [70]. A malicious app can exploit this vulnerability to access a

protected component with a custom permission by declaring another custom permission with

the same name as that legitimate custom permission.

Figure 2.3 illustrates this attack with an Android system of two apps: Victim and Attacker1

apps. Both apps have defined the same permission, named P1, with different protection
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Figure 2.3: Identical Custom Permission Attack

levels. Victim app uses P1 to protect Protected component with the protection level

Signature, meaning that only those apps with the same signature as Victim should be able

to communicate with Protected. The Attacker1 app, if installed first, can access the

Protected component by exploiting the identical custom permission vulnerability through

defining the permission P1 with Normal protection level which will be granted automatically

to it.

Simply uninstalling the Attacker1 app will not fix the problem, if there is another app that

declares the same permission name. As discussed in [70], another malicious app, Attacker2,

can be installed after installing the Attacker1 app asking for permission P1 which would

be granted automatically. At this point, even if we uninstall the Attacker1 app, Attacker2

can still access the Protected component inside the Victim app.

2.4.5 Passive Data Leak

Android apps store their sensitive data in database components called Content Providers.

Content Providers can be used for both intra-app data persistence as well as sharing data
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across apps. If the read access to a Content Provider is not properly guarded with a

permission, other apps can exploit this vulnerability to disclose and leak sensitive data [135].

2.4.6 Content Pollution

This attack is possible when the write access to a Content Provider is not properly guarded

with a permission [135]. This vulnerability allows a malicious app to manipulate sensitive

data managed by a vulnerable app. The manipulated data can cause inadmissible side effects

such as altering firewall rules or blocking incoming calls.

21



Chapter 3

Research Problem

Android’s privilege management system has been shown to be ineffective in protecting system

resources and apps from security attacks [89, 173]. Since Android manages privileges at the

granularity of apps, all components of an Android app inherit the permissions granted to

the app, regardless of whether they need those permissions or not. As a result, a malicious

component inside an app, such as a third-party library, can leverage privileges meant for

other components for nefarious purposes [173]. Moreover, by default, a component in Android

has significant leeway in terms of the components it can communicate with, both within and

outside of its parent app.

Android’s coarse-grained permission model violates the principle of least-privilege [84, 202].

The over-privileged nature of components in Android is the root cause of various Inter-

component Communication (ICC) security attacks, most notably Intent spoofing and unau-

thorized Intent receipt presented in [89], privilege escalation attack discussed in [111], passive

data leak and content pollution attacks presented in [135], and identical custom permission

attack explained in [70]. These kinds of attacks cannot be prevented by the platform at the

moment, as they do not violate the security mechanisms supplied by Android. Moreover,
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they cannot be effectively handled by the state-of-the-art security analysis tools, both the

static and the dynamic analysis approaches (recall Chapter 1).

3.1 Research Gap

Key to the adaptation logic in the self-adaptive software systems is the knowledge component,

which contains an architectural model that represents the underlying system and certain user

objectives (recall Section 2.1).

Prior research on self-managing systems assume that the model is developed by a software

architect or already exists [142, 163, 164, 171, 197]. This assumption does not hold in an

Android system, since the software architecture of the system is not known ahead of time. In

such a system, a user can add, update, or remove apps while the system is running. Hence,

the space of possible software architectures is infinite.

Moreover, as illustrated in Figure 3.1, the current security mechanisms for Android apps,

both static and dynamic analysis approaches, are insufficient for detecting and preventing

the increasingly dynamic and sophisticated security attacks.

Static analysis approaches [144, 215, 140, 151, 71, 221, 89, 161, 111, 104, 143, 72, 184], see

Figure 3.1, suffer from false positives, i.e., false alarms. The high number of false alarms

generated by such approaches lower their applicability. Moreover, static analysis approaches

face severe limitations when it comes to analyzing obfuscated or dynamically loaded code

[173], thus in practice also suffer from false negatives. Precise forms of static analysis also

require significant amounts of computing resources and can take a substantial amount of

time to execute.
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Figure 3.1: The state of the current security mechanisms for Android apps. (Tools with gray

color means they do not detect or prevent security attacks instead they monitor the running system, i.e.,

profiling tools.)

Dynamic analysis approaches [103, 206, 68, 127, 100, 162, 82], see Figure 3.1, are not sound,

and are thus prone to false negatives. They require execution of test cases to understand the

behavior of an app under analysis. Since the provided test cases are likely to be incomplete,

parts of the app’s behavior are not discovered. These approaches are susceptible to a variety

of anti-debugging and anti-monitoring defenses [190, 172, 176, 210, 178, 64, 136, 114, 97, 90]

as well as time bombs or logic bombs [95], which further decrease their efficacy. Furthermore,

dynamic approaches are tedious and time consuming, as exhaustive execution of apps can

take a substantial amount of time.

To overcome the limitation of pure static or pure dynamic analysis, Holla and Katti [126]

discussed the need for hybrid approaches to protect Android systems. Despite that, few

approaches proposed hybrid techniques such as Dr. Android [134], SmartDroid [228], and

ProfileDroid [216]. Nevertheless, these tools provide detection capabilities but not prevention
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mechanisms. Moreover, they require changes to apps’ implementation logic which prevent

their practical use.

All of these approaches perform complete analysis of Android systems, and hence lack

the ability to efficiently analyze systems as changes occur—such as adding/removing apps,

granting/revoking permissions at runtime, or dynamically loading code.

3.2 Problem Statement

The problem caused by the over-privileged nature of components in Android apps due to the

current Android privilege management scheme can be summarized as follows:

Components in Android apps are over-privileged and violate the least-privilege security

principle which leads to many types of Inter-Component Communication attacks.

3.3 Thesis Statement

My thesis statement can be summarize as follows:

The goal of my research is to mitigate inter-component communication security attacks in

Android through an automated approach that determines and enforces the LP architecture

of an Android system.

Every time the system changes, the self-protecting approach (1) reflects the changes on

the maintained least-privilege architecture of the system, (2) incrementally and efficiently
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analyzes the security posture of the system for potential ICC attacks, and (3) dynamically

enforces the least-privilege architecture to prevent security attacks at runtime. Thereby, it

ensures the system remains safe and protected at all times.

3.4 Research Hypotheses

This research entails investigating the following research hypotheses:

• The systematic violation of the least-privilege security principle increases the attack

surface of an Android system. In such a system, if a component is compromised, the

impact might be severe due to the extra privileges that compromised component has. If

we were able to determine the least-privilege architecture of an Android system, we could

reduce its attack surface and aid in comprehending its security posture. A least-privilege

architecture is one in which the components are only granted the privileges that they

require for providing their functionality. Determining the least-privilege architecture of

an Android system requires determining the exact privileges each component needs to

fulfill its task. One solution to this problem is to rely on apps’ developers to specify

the required privileges for each component. Indeed, such a solution is error prone and

labor intensive. However, since we have the implementation logic of these apps in their

bytecode, it is plausible to determines the exact privileges each component needs from

its implementation logic without human intervention.

Hypothesis 1: An automated approach for determination of least-privilege architec-

ture in Android can be developed to reduce the attack surface without the need to

change the implementation logic of Android apps.

26



• After determining the least-privilege architecture of an Android system, the Android

runtime environment needs to be modified to enforce the determined architecture.

If a component tries to obtain a privilege that is not specified in the least-privilege

architecture, the modified Android runtime environment should prevent it. Such

an enforcement of the least-privilege architecture would prevent many ICC attacks

facilitated by the extra privileges the components in Android apps currently have.

Hypothesis 2: By enforcing the least-privilege architecture of an Android system, it

is possible to prevent inter-component communication security attacks.

• Due to the complex and dynamic nature of Android systems (e.g., adding a new app,

removing an existing app, granting/revoking a permission, and dynamic class loading),

their architecture and also their security posture continuously change over time. Simply

determining the least-privilege architecture at design time and enforcing it at runtime,

is not practical since the determined architecture will become an obsolete representation

of the system as the system evolves over time. Moreover, repeating the entire security

analysis of an Android system, either statically or dynamically, every time the system

changes is prohibitively expensive for practical use.

Hypothesis 3: An efficient approach for dynamic monitoring along with incremental

security analysis for the least-privilege architecture of an evolving Android system

can be devised to keep the system protected against inter-component communication

security attacks in spite of changes at runtime.
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Chapter 4

The Effects of Code Obfuscations on

Android Apps and Anti-Malware

Products

The Android platform has been the dominant mobile platform in recent years resulting

in millions of apps and security threats against those apps. Anti-malware products aim

to protect smartphone users from these threats, especially from malicious apps. However,

malware authors use code obfuscation on their apps to evade detection by anti-malware

products.

To assess the effects of code obfuscation on Android apps and anti-malware products, we

have conducted a large-scale empirical study that evaluates the effectiveness of the top

anti-malware products against various obfuscation tools and strategies. To that end, we have

obfuscated 3,000 benign apps and 3,000 malicious apps and generated 73,362 obfuscated apps

using 29 obfuscation strategies from 7 open-source, academic, and commercial obfuscation

tools.
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The findings of our study indicate that (1) code obfuscation significantly impacts Android

anti-malware products; (2) the majority of anti-malware products are severely impacted by

even trivial obfuscations; (3) in general, combined obfuscation strategies do not successfully

evade anti-malware products more than individual strategies; (4) the detection of anti-malware

products depend not only on the applied obfuscation strategy but also on the leveraged

obfuscation tool; (5) anti-malware products are slow to adopt signatures of malicious apps;

and (6) code obfuscation often results in changes to an app’s semantic behaviors.

4.1 Introduction

Android is the dominant mobile platform holding 85% of the smartphone OS market share [26].

At the same time, the number and sophistication of malicious Android apps are increasing.

For instance, McAfee Labs crawled several app stores over six months in 2016 and detected

more than 9 million malicious apps [25]. As another example, Kaspersky discovered more

than 4 million new malware in 2016 [24].

Many reasons contribute to this meteoric rise of malware apps including: (1) the relative ease

of creating a piggybacked app [232, 146, 145, 147, 148], i.e., a mutated version of a legitimate

app injected with either malicious code or embedded advertisements; and (2) the prevalence

of alternative Android app stores (i.e., app stores other than the official Android app store,

Google Play [35]), on which malicious apps may be distributed to users.

To protect mobile devices, users often rely on anti-malware products, which scan apps to

determine if they are benign or malicious. However, many malware apps have previously

evaded detection by these products. Examples of such malicious apps include Brain Test [22],

VikingHorde [27], FalseGuide [34], and DressCode [23]. These apps have infected millions
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of users before they were detected. To evade detection, malware authors often rely on code

obfuscation.

Code obfuscation transforms code into a form that is more difficult for humans, and possibly

machines, to read, understand, and reverse engineer. These transformations change the

syntax of code but not their semantics [93]. These changes could be small (e.g., inserting

unused code) or sophisticated (e.g., performing bytecode encryption)[180]. Although code

obfuscations are used by malware authors, they are also used by benign app developers to

increase the difficulty of reverse engineering their apps.

To better protect the intellectual property of benign app developers and prevent cloning

of their apps, several companies have developed obfuscation tools, or obfuscators for short,

that implement different code transformations (e.g., identifier renaming, string encryption,

reflection, etc.). Given the use of obfuscations by malware authors, the goal of this study is

to assess the performance of commercial anti-malware products against various obfuscation

tools and strategies.

Although some researchers have studied an individual obfuscation tool’s effectiveness on

a limited number of anti-malware products [154, 175, 180, 229, 108, 128], no study has

performed a large-scale assessment of (1) the effect of individual and combined obfuscation

strategies provided by multiple obfuscations tools on anti-malware products, (2) the effect the

tools and strategies have on the accuracy of anti-malware products for benign apps and not

just malicious apps, (3) the effect of time on obfuscated-app detection by those products, and

(4) whether the application of obfuscation strategies result in valid, installable, and runnable

apps. Due to the lack of a study regarding the effect of specific and combined obfuscation

strategies on anti-malware products, it is unclear which strategies evade such products the

most. None of the aforementioned studies determine the extent to which anti-malware

products erroneously consider obfuscated, benign apps as malicious, which is undesirable for

both anti-malware product vendors and benign app developers.

30



To determine if the transformations applied by obfuscation tools break an app’s semantics,

our study investigates the ability of obfuscation tools to generate valid, installable, and

runnable apps. An obfuscated app is not useful to a benign app developer or malicious author

if it cannot be executed on a device or if its benign, functional behavior changes. To ensure

an app’s obfuscation is successful, our study further compares the behavior of an obfuscated

app with the behavior of its corresponding original app.

Overall, this chapter makes the following contributions:

• We assess the accuracy of over 60 anti-malware products on apps obfuscated using 7

obfuscation tools and 29 obfuscation strategies on 3,000 benign apps and 3,000 malicious

apps, totaling over 73,000 obfuscated apps. We further consider the effect of an app’s

age on that accuracy.

• We evaluate the ability of 7 obfuscation tools to generate Android apps that are valid,

installable, and runnable.

• Based on our results, we make suggestions for improving anti-malware products and

obfuscation tools.

• To conduct this study, we have implemented a framework for obfuscating Android apps

and scanning them using anti-malware products. The framework is reusable, can be

extended to include more obfuscation tools and strategies, and is available online [37],

along with our resulting dataset of over 73,000 obfuscated apps.

The remainder of this chapter is organized as follows. Section 4.2 covers background informa-

tion about reverse engineering Android apps and code obfuscation. Section 4.3 discusses the

research questions that this study aims to answer. The research methodology of this study is

presented in Section 4.4. The results and the findings are reported in Section 4.5. Section 4.6

discusses the results and provides recommendations to enhance anti-malware products and

obfuscation tools. Finally, the threats to validity are presented in Section 4.7.
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4.2 Background

This section provides a brief overview of reverse engineering Android apps and obfuscation

strategies to help the reader understand the rest of the chapter.

4.2.1 Reverse Engineering Android Apps

classes.dex, the main DEX file of an Android app (recall Section 2.2), is a file in the APK

generated by dx, a utility that converts .class files into a DEX file. classes.dex can be

disassembled by Baksmali [39] into an Intermediate Representation (IR) format which, in

turn, can be assembled by Smali [39] to generate a new variant of classes.dex. The new

classes.dex can be repackaged using a tool such as Apktool [14], a reverse-engineering tool for

Android APK files, to generate a new APK variant (e.g., an obfuscated app).

Different IR formats can be generated from classes.dex, including Smali code using Apktool

and .class files using DARE [159] or dex2jar [32]. Moreover, Soot [208] can generate various

IRs such as Baf, Jimple, Shimple, Grimp, or even a low-level IR such as Jasmin.

4.2.2 Obfuscation Strategies

To study the effectiveness of anti-malware products, we applied several different obfuscation

strategies on each Android app. We use the term obfuscation strategy to refer to a single

transformation or multiple transformations applied to an Android app. We consider three

types of strategies: trivial strategies, non-trivial strategies, and combined strategies. Table

4.1 presents abbreviations of the trivial and non-trivial obfuscations, which will be used

throughout this chapter.
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Table 4.1: Obfuscation-strategy abbreviations

Trivial Obfuscation Non-trivial Obfuscation

Disassembling/Reassembling DR Junk code insertion JUNK Identifier renaming IDR

AndroidManifest transformation MAN Class renaming CR Control flow CF

Alignment ALIGN Member reordering MR Reflection REF

Repackaging REPACK String encryption ENC

Trivial obfuscation strategies are code transformations that do not change the app’s

bytecode. For this study, we examined the following trivial strategies:

• Repackaging (REPACK) involves unzipping the APK file and re-signing it with a

different signing certificate. This simple transformation thwarts anti-malware products

that rely on the app’s certificate to determine if the app is malicious or not. For this

transformation, we unzip an APK file using the zipfile Python library and resign it

with our own signing certificate using jarsigner [36], a tool for verifying and generating

digital signatures for JAR files.

• Disassembling and Reassembling (DR) involves disassembling the app using a reverse-

engineering tool, such as Apktool, reassembling the app, and then signing it. By

disassembling and reassembling the app, the items in classes.dex will be reordered.

Anti-malware products that rely on matching classes.dex against signatures of known

malicious apps would be broken.

• AndroidManifest transformation (MAN): Each Android app contains a configuration

file called AndroidManifest.xml file, which specifies the principal components that

constitute the application, including their types and capabilities, as well as required and

enforced permissions. This transformation changes the manifest by adding permissions

or adding components’ capabilities, called Intent Filters in Android.

• Alignment (ALIGN) realigns all uncompressed data, such as images or raw files, in an

APK file. This transformation changes the cryptographic hash of an APK file. Therefore,
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if an anti-malware product identifies malicious apps based on their cryptographic hashes

(e.g., MD5), this transformation can thwart it.

Non-trivial obfuscation strategies are code transformations that change an app’s byte-

code. We study the following non-trivial obfuscation strategies:

• Junk code insertion (JUNK) adds code that does not affect the execution of an app. Junk

code insertion can add null operations (nop), comments, and/or debugging information

to a classes.dex file.

• String encryption (ENC) encrypts the strings in classes.dex and adds a function that

decrypts the encrypted strings at runtime. Anti-malware products that rely on the

string data in an app to determine if it is malicious will be evaded by this transformation.

• Control-flow manipulation (CF) changes the methods’ control-flow graph by adding

conditions and iterative constructs. In addition, this transformation changes the app’s

call graph by adding new methods and fake calls to the newly added methods.

• Members reordering (MR) changes the order of instance variables or methods in a

classes.dex file, which evades anti-malware products that depend on the sequence of

members in a class.

• Identifier Renaming (IDR) renames the instance variables and/or the method names in

each Java class with randomly generated names. This transformation changes signatures

generated from identifiers and changes the method table in Dalvik bytecode.

• Class renaming (CR) renames the classes and/or the packages in an app with randomly

generated names. This transformation changes the method table in the Dalvik bytecode.

• Reflection (REF) transformations convert direct method invocations into reflective

calls using the Java reflection API, which can evade static analyses that rely on direct

method calls.
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Combined strategies are combinations of the aforementioned obfuscation strategies. Pre-

vious work [180, 154] has mentioned that combining obfuscation strategies result in stronger

obfuscations. Our study leverages different combined strategies to understand which combina-

tions of transformations will result in better evasion of anti-malware products. The majority

of our leveraged combined strategies have not been empirically studied in previous work.

4.3 Research Questions

In this chapter, our primary goal is to provide a large-scale empirical study that evaluates

the effectiveness of anti-malware products against various obfuscation tools and strategies.

To that end, this section presents and discusses the research questions this study attempts to

answer. Moreover, this section shows who will benefit from answering each research question.

In the remainder of this section, we introduce and motivate each research question that we

study.

RQ1. How is the accuracy of anti-malware products affected by obfuscation strategies?

The use of code obfuscation in Android apps has become popular and is leveraged by both

benign and malicious app developers. Given that smartphone users rely on anti-malware

products to protect their devices, it is crucial for anti-malware products to distinguish

malicious apps from benign ones with high accuracy, while being resilient to obfuscation. RQ1

aims to measure the accuracy of commercial anti-malware products against a broad range of

obfuscation strategies. We measure accuracy in this chapter using precision and recall, since

these metrics take into account false positives (i.e., benign apps marked as malicious) and

false negatives (i.e., malicious apps marked as benign).

Anti-malware providers will benefit from answers to RQ1 in order to improve their products,

especially against the obfuscation strategies that thwart their products the most. In addition,
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the answers to RQ1 can help smartphone users choose between anti-malware products. Benign

app developers will benefit from answers to RQ1 by learning which obfuscation strategies

prevent their apps from being flagged as malicious.

RQ2. How is the accuracy of anti-malware products affected by obfuscation tools?

Each anti-malware product’s effectiveness likely varies based on the implementations of

obfuscation strategies provided by an obfuscation tool. To make that determination, RQ2

measures the accuracy of anti-malware products on obfuscation tools, where accuracy is again

measured in terms of precision and recall.

Anti-malware product vendors, benign app developers, and obfuscation tool developers can

benefit in several ways from the answers to RQ2. Anti-malware product vendors can use

this information to determine which specific implementations of obfuscation strategies may

cause false positives (i.e., benign apps marked as malicious) in their products. Similarly,

these vendors can benefit from learning which obfuscations result in successful evasion from

detection by malicious apps. Answers to RQ2 can aid benign app developers in choosing the

obfuscation tools that will prevent their apps from erroneously being marked as malicious.

Furthermore, if false positives or false negatives (i.e., malicious apps marked as benign) are

due to obfuscation tools, as opposed to the anti-malware products, then this information is

useful for correcting obfuscation tools.

RQ3. How is the accuracy of anti-malware products affected by the year an app is created?

RQ3 aims to study the accuracy of anti-malware products on non-transformed and transformed

apps over different time periods, where each time period for our study spans two years. We

consider transformed apps as belonging to the same time period as their non-transformed

versions. For example, if we transform apps created in time period 2012-2013, we still consider

the resulting obfuscated apps as created in 2012-2013, for the purposes of RQ3.
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This research question allows us to understand the effectiveness of anti-malware products

when applied to different time periods and to determine if those products’ detection accuracies

are affected by time. Anti-malware vendors can use this information to determine the time

periods that result in poor accuracy for their products, aiding them with improving results

for apps created during those problematic time periods.

RQ4. To what extent do obfuscation tools result in valid, installable, and runnable apps?

Although an obfuscated app does not need to be runnable when scanned by an anti-malware

product, developers of benign apps and obfuscation tools rely on those tools to produce

valid, installable, and runnable apps. Similar to [128], we consider an APK to be valid if

an obfuscation tool successfully generates a signed APK package that includes a classes.dex

file containing correct Dalvik bytecode syntax. An app is installable if it can be successfully

deployed into the Android runtime. For our purposes, a transformed app is runnable if

its runtime behavior is similar to its non-transformed version. RQ4 is particularly useful

for obfuscation tool developers since answers to that question provide information about

transformations that result in malformed apps.

4.4 Research Methodology

This section describes the research methodology that we pursued in terms of our study

subjects, selected obfuscation tools, our evaluation framework, and our selected anti-malware

products.
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Figure 4.1: Obfuscation study methodology

4.4.1 Study Subjects

We used a dataset of benign apps consisting of 3,000 apps from Google Play and 3,000

malicious apps. To avoid having malicious apps in our ground-truth dataset of benign apps,

we obtained benign apps from AndroZoo [57], which is a collection of more than 5.5 million

apps collected from several sources, including Google Play. AndroZoo apps have been scanned

by commercial anti-malware products using the VirusTotal service [17], a free online service

provided by Google that scans URLs, files, and Android apps. Approximately 25,000 Google

Play apps out of nearly 2 million apps in AndroZoo are marked as benign by all anti-malware

products. From these 25,000 apps, we have randomly selected 3,000 apps for this study. The

malicious apps belong to several malware repositories including Android Malware Genome

[233], Contagio [20], AndroTotal [152], the Drebin dataset [62] and VirusShare [18]. In

addition to these malware repositories, we used the VirusTotal service to include recently

discovered malicious apps that belong to the following malware families: BrainTest [22],

VikingHorde [27], and FalseGuide [34].

4.4.2 Obfuscation Tools

We have included the following obfuscation tools for our study, whose supported obfuscation

strategies are depicted in Table 4.2:

• Allatori [16] is a commercial Java and Android obfuscation tool that supports a wide

range of obfuscation strategies. Many companies such as Amazon, Fujitsu, and Motorola

rely on Allatori to protect their software systems from being reverse engineered. The
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Table 4.2: Obfuscation strategies of each obfuscation tool

Trivial Non-trivial

Obfuscator/Strategy A
L

IG
N

D
R

M
A

N

R
E

P
A

C
K

C
F

C
R

E
N

C

ID
R

J
U

N
K

M
R

R
E

F

Apktool/Jarsigner X X

Allatori X X X X

DashO X X X

DroidChameleon X X X X X X

ADAM X X X X X

ProGuard X

providers of this tool, Smardec Inc., provided us with a full version for educational

purposes.

• ProGuard [38] is a widely used open-source shrinker, optimizer, obfuscator, and prever-

ifier for Java bytecode. A preverifier performs certain checks on Java bytecode prior

to runtime. ProGuard supports identifier renaming and is the default tool in many

development environments, including Android Studio [30], the official IDE for Android

apps.

• ADAM [229] is a research tool for obfuscating Android apps. It transforms the Smali

code of a reversed-engineered app.

• DroidChameleon [180] is a state-of-the-art research tool for obfuscating Android apps

which supports a wide range of obfuscation strategies. Compared to ADAM, Droid-

Chameleon supports more complex transformations. Like ADAM, DroidChameleon

transforms the Smali code of a reversed-engineered app.

• DashO [31] is a commercial tool for obfuscating Android and Java applications. DashO

provides static analysis protection and runtime security control against tampering,

unauthorized debugging, and some runtime attack patterns. This tool supports control-
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flow, string-encryption, and identifier-renaming transformations. The providers of

DashO, PreEmptive Solutions, supplied us with a full free version valid for 30 days.

• Apktool and Jarsigner were used to perform the DR and REPACK obfuscation strategies,

respectively. These two transformations often work in tandem because a reassembled

APK must be resigned.

We also considered another tool, DexGuard [33], which is an advanced and commercial

version of ProGuard. We contacted the providers of DexGuard to obtain an educational or

commercial version of their tool to run on our dataset. Unfortunately, they only allow their

tool to run on a restricted number of Android apps; and they do not sell licenses for research

purposes. Hence, we did not include it in this study.

4.4.3 Evaluation Framework

To conduct our study, we have developed the framework depicted in Figure 4.1, which

consists of the following four modules: IR Converter, IR Transformer, APK Generator, and

Data Analyzer. IR Converter takes an Android APK as input and converts its code to

Intermediate Representation (IR) formats. IR Transformer utilizes all obfuscation tools to

transform the IR format using a variety of obfuscation strategies. APK Generator repackages

each obfuscated IR file and generates an obfuscated APK from that file. Data Analyzer

scans obfuscated apps using anti-malware products, stores the scanning results in a MySQL

database, analyzes the scanning results, and creates various statistical reports.

Our framework is reusable and extendable. A user can add new obfuscation tools and support

different obfuscation strategies. Therefore, we make the framework available for researchers

and practitioners [37]. The framework is a Python program that consists of more than 5,500

lines of code, not counting the obfuscation tools.
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IR Converter. Obfuscation tools do not require source code and they work directly on

the IR format. Therefore, this module converts an APK file to two IR formats: smali using

Baksmali and Java bytecode using dex2jar. In our framework, we generate these two IR

formats since ADAM and DroidChameleon work on smali code while all other obfuscation

tools work on Java bytecode.

IR Transformer. This module generates several obfuscated IR files of the original IR file.

The framework is configured to leverage twenty nine different obfuscation strategies using

seven obfuscation tools (recall Section 4.4.2).

APK Generator. For each obfuscated IR file, this module generates an obfuscated Android

app. First, this module leverages the dx tool from the Android SDK to convert an obfuscated

IR to a classes.dex file. Next, it generates an APK file with the new classes.dex using Apktool.

Finally, the APK file is signed using jarsigner with our own certificate, since the original

certificate of the app cannot be obtained.

Data Analyzer. This module uses the VirusTotal service to scan apps using anti-malware

products. This module uploads the apps to VirusTotal, which scans them using more than

60 up-to-date commercial anti-malware products. For each uploaded app, VirusTotal returns

a unique scanning ID, which Data Analyzer uses later to download the scanning reports and

stores them in a MySQL database. Data Analyzer queries and processes the database to

generate various statistical reports.

4.4.4 Anti-malware Products

We have evaluated the accuracy and the resiliency of 61 commercial anti-malware products

against obfuscations. Due to space limitations and to ensure readability, we focus on the
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results of the 21 most popular Android anti-malware products in this chapter; however, we

make the results for all 61 anti-malware products available online [37].

Table 4.3 shows the anti-malware products evaluated in this study and includes the following

information for each product: its number of Downloads ; its overall user satisfaction score as

represented using a star-rating (Stars); and the number of users who reviewed the product

(Reviewers). The numbers in Table 4.3 are obtained from Google Play.

Table 4.3: Anti-malware products (K: Thousand. M: Million)

Product Downloads Stars Reviews Product Downloads Stars Reviews

Ikarus 100K - 500K 4.2 2,862 Trustlook 10M - 50M 4.4 476,671

Emsisoft 100K - 500K 4.2 1,425 McAfee 10M - 50M 4.4 506,491

Fortinet 100K - 500K 4.2 2,086 Avira 10M - 50M 4.5 441,016

AegisLab 100K - 500K 4.2 2,905 Norton
10M - 50M 4.5 946,230

F-Secure 500K - 1M 4.1 12,183 Symantec

Comodo 500K - 1M 4.6 33,395 ESET-NOD32 10M - 50M 4.7 490,840

GData 1M - 5M 4.0 8,850 Kaspersky 10M - 50M 4.7 2,061,983

Sophos 1M - 5M 4.3 11,816 DrWeb 50M - 100M 4.5 1,044,410

TrendMicro 1M - 5M 4.6 49,977 Antiy-AVL 100M - 500M 4.1 2,166

BitDefender 5M - 10M 4.5 88,809 Avast 100M - 500M 4.5 4,724,478

CAT-QuickHeal 5M - 10M 4.4 204,709 AVG 100M - 500M 4.5 5,785,171

4.5 Data Analysis and Results

For conducting our experiments, we have leveraged a high performance computing cluster

(HPC), managed by our organization, that has more than 200 compute nodes with a total of

more than 8,000 cores. Each compute node has 264GB-512GB RAM. We utilized HPC to run

thousands of jobs simultaneously. On each app, we applied 29 different obfuscation strategies:

4 trivial transformations, 7 non-trivial transformations, and 18 combined transformations.

Table 4.4 shows the number of obfuscated apps resulting from applying the 29 obfuscation

strategies leveraged by the obfuscation tools. An empty cell indicates an obfuscation strategy
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that is not support by a particular obfuscation tool. In total, we have generated 73,362

obfuscated apps from 3,000 benign apps and 3,000 malicious apps.
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In the remainder of this section, we present the results of our experiments. We measured

the effectiveness of anti-malware products at identifying malicious apps in terms of their

precision, which measures the extent to which benign apps are labeled as malicious, and

recall, which measures the extent to which malicious apps are labeled as benign. We use the

F-score, i.e., the harmonic mean of precision and recall, to measure the overall detection rate

of anti-malware products.

4.5.1 RQ1. Obfuscation Strategies

We studied the accuracy of anti-malware products with respect to a wide variety obfuscation

strategies in two scenarios. In the first scenario (Section 4.5.1), we compare the detection

rates of each anti-malware product on the original dataset and the obfuscated dataset. In

the second scenario (Section 4.5.1), we measure the detection rate of anti-malware products

against each obfuscation strategy.

Detection rate on original and obfuscated apps

Figure 4.2 shows the detection rate of 21 anti-malware products on the original dataset of

6,000 apps, depicted as black bars, and the obfuscated dataset of 73,362 apps, depicted as

gray bars. Figure 4.2 demonstrates that the detection rate of anti-malware products on the

original dataset is above 85% for 16 products, and between 75% and 85% for 4 anti-malware

products. TrendMicro exhibits the lowest detection rate, 56%. The average detection rate is

87% on the original dataset. Consequently, prior to application of obfuscation strategies from

obfuscation tools, these top anti-malware products are quite effective at protecting Android

users; albeit there is room for improvement.
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Figure 4.2: Detection rate of 21 anti-malware products on 6,000 original apps and 73,362
obfuscated apps.

Once obfuscation strategies are applied, the detection rates for those anti-malware products

decrease significantly, as shown in Figure 4.2. For example, AegisLab achieves the highest

detection rate on the original dataset, 96%, since it mislabeled only 247 apps in the original

dataset. Its detection rate has dropped to 55% on the obfuscated dataset—a 40% decrease—as

it mislabeled 27, 636 apps. Other anti-malware products are also severely impacted by code

obfuscation. While the average detection rate of anti-malware products on the original apps

is 87%, the average detection rate on the obfuscated dataset is 67%—a 20% decrease.

Finding 1: Code obfuscation significantly impacts Android anti-malware products. The

average detection rate for the top anti-malware products decreases from 87% to 67%—a

20% decrease.
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Detection rate for each obfuscation strategy

To better understand the impact of every obfuscation strategy on each anti-malware product,

Table 4.5 presents the detection rate of anti-malware products, expressed as the F-score,

on the original dataset and the various obfuscation strategies. For example, the detection

rate of Symantec on the original dataset is 93%. This detection rate has dropped to 64%

on obfuscated apps using MAN, to 69% on obfuscated apps using ENC, and to 31% on

obfuscated apps using ENC IDR.

Table 4.5 demonstrates that the majority of anti-malware products are not affected by

REF. We consider a transformation’s effect on a product’s detection rate to be negligible if

the detection rate has either improved, decreased by less than 3%, or remains above 85%.

In fact, the accuracy of F-Secure, GData, BitDefender, and Emsisoft improves on apps

obfuscated using REF. This result indicates that the intensive use of code reflection makes

an app look suspicious to our studied anti-malware products, improving their detection

rates. Unfortunately, this phenomenon may result in false positives for certain anti-malware

products. For instance, AVG erroneously marked 307 benign apps obfuscated using REF as

malicious, while also correctly detecting nearly all malicious apps obfuscated using REF.

Finding 2: REF transformations make apps look suspicious, increasing the chance of an

app being labeled as malicious.

Perhaps most surprising is that certain trivial obfuscation strategies are quite effective

against the top anti-malware products. Notably, the anti-malware products that we studied

rely heavily on analyzing an app’s manifest file, which contains configuration information.

Consequently, these products are often evaded by apps obfuscated using MAN, which involves

the trivial addition or modification of permissions or Intent filters. For example, the detection
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Table 4.5: (RQ1) Detection rate of anti-malware products, measured by their F-score (%),
against each obfuscation strategy.
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AegisLab 96 84 52 36 92 52 35 53 39 62 66 58 41 11 57 66 37 3 68 61 58 43 4 65 66 66 68 63 58 35

Ikarus 94 95 94 66 96 75 84 81 86 86 93 88 75 77 84 88 85 64 89 86 89 86 60 84 87 93 89 82 92 87

CAT-QuickHeal 94 95 93 92 94 89 91 75 88 89 93 94 73 92 93 93 91 55 91 90 94 91 54 76 91 94 84 70 89 80

AVG 94 75 96 63 96 79 83 85 91 84 97 88 77 77 83 97 85 58 90 85 89 85 57 92 96 92 90 92 91 85

McAfee 94 90 50 21 93 47 20 45 52 16 73 23 20 41 17 73 20 21 22 20 22 17 22 66 66 15 18 63 14 20

ESET-NOD32 94 94 92 91 94 93 93 80 91 46 94 66 75 92 92 94 93 68 86 46 66 91 61 80 92 68 59 72 80 57

Fortinet 93 94 89 86 93 88 83 78 84 75 91 86 67 79 91 88 83 58 87 77 87 84 50 83 83 89 75 72 72 56

Symantec 93 86 87 64 88 76 84 69 79 84 92 88 63 68 83 92 85 31 90 85 89 85 31 75 90 92 90 73 91 85

Sophos 93 93 91 90 93 89 85 70 79 93 88 92 70 84 93 87 86 52 91 95 92 87 50 66 72 93 91 51 91 85

Avira 92 92 87 84 92 85 84 65 78 78 87 60 61 78 86 86 85 38 80 80 59 83 38 69 85 58 33 63 73 61

F-Secure 89 87 87 85 90 85 82 81 84 95 90 94 73 65 91 90 82 53 93 94 92 84 53 87 88 93 93 84 80 71

Comodo 88 88 27 16 82 22 17 19 24 17 19 15 17 20 11 33 16 20 14 18 16 11 20 20 26 9 14 23 11 18

GData 88 91 84 75 88 79 61 75 77 95 85 91 62 54 79 85 50 46 83 79 81 50 45 79 77 81 82 77 57 41

BitDefender 87 90 84 73 88 78 60 74 75 95 85 91 61 46 76 85 45 44 83 78 78 46 43 79 77 77 83 77 58 41

Emsisoft 87 90 84 73 88 78 60 74 75 95 85 91 61 46 76 85 45 43 83 78 78 46 43 79 77 77 83 77 59 41

DrWeb 87 88 83 81 88 89 86 90 86 93 88 40 92 89 90 88 86 90 94 94 41 90 89 88 87 39 40 87 36 35

Trustlook 84 10 23 0 48 17 0 22 20 0 36 0 2 3 0 38 0 1 0 0 0 0 2 40 39 0 0 40 0 0

Kaspersky 81 83 75 70 82 81 76 70 75 88 81 80 73 77 81 81 77 50 86 89 81 81 50 70 77 83 84 64 91 85

Antiy-AVL 78 79 56 26 80 41 22 47 47 13 68 18 20 25 12 70 21 24 12 8 20 12 25 70 69 12 15 65 8 7

Avast 75 75 63 57 75 73 66 66 66 78 74 75 71 67 78 74 68 46 91 79 76 76 45 60 69 83 91 47 91 86

TrendMicro 56 57 11 7 48 12 7 10 14 6 16 10 9 15 6 16 7 11 5 7 10 5 10 12 14 7 4 12 3 5

AVERAGE 87 83 72 60 85 68 61 63 67 66 76 64 55 57 66 77 59 42 68 64 63 60 41 68 73 63 61 64 59 51

rate of McAfee dropped from 94% to 21% for apps obfuscated using MAN. Overall, the average

detection rate of anti-malware products fell to 60% from 87% when apps are obfuscated using

MAN—a 28% decrease.

Finding 3: MAN, which is a trivial obfuscation strategy, severely impacts many anti-

malware products, on average, decreasing a product’s detection rate by 28%.

Another interesting, possibly counter-intuitive, conclusion that we can draw from Table 4.5 is

that combined transformations are not always superior to individual transformations. For
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instance, while the detection rate of AVG against CF is 79%, its detection rate against

combined transformations that include CF is between 57% and 97%.

Finding 4: In general, combined transformations do not affect detection rates more than

single transformations: The average detection rate of anti-malware products is 61% for

single non-trivial obfuscations, and 61% for combined obfuscations.

Figure 4.3: (RQ1) The average detection rate of all anti-malware products regarding each
obfuscation strategy.

Figure 4.3 contains box-and-whisker plots illustrating the impact of each obfuscation strategy

on all anti-malware products. These results suggest that some obfuscation strategies have

negligible effects on the majority of anti-malware products. For example, REPACK did not

affect 19 anti-malware products. Similarly, the use of the MR transformations did not affect

14 anti-malware products. Lastly, the REF transformation did not thwart the majority of

anti-malware products.

Figure 4.3 demonstrates that ENC IDR and CF ENC IDR are very effective in thwarting

anti-malware products. In fact, these two transformations evaded all anti-malware products

except DrWeb.
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Finding 5: ENC IDR and CF ENC IDR are the most successful transformations for

evading anti-malware products.

4.5.2 RQ2. Obfuscation Tools

For RQ2, we studied the detection rate of anti-malware products on apps transformed using

various obfuscation tools. To that end, we analyze the results of each anti-malware product’s

detection rate on each obfuscation tool. We further assess the overall effect of each obfuscation

tool across all studied anti-malware products.

Table 4.6 depicts the detection rate of each anti-malware product on apps transformed using

each obfuscation tool. From Table 4.6, we observe that some anti-malware products are

severly impacted by all obfuscation tools. For example, the detection rate of Trustlook

dropped to less than 40% on apps obfuscated using any of our studied tools. Furthermore,

Trustlook marked all apps obfuscated by the following tools: DroidChameleon, ProGuard,

and DashO as benign apps. Likewise, TrendMicro and Comodo are evaded by all obfuscation

tools, except ADAM.

The box-and-whisker plot shown in Figure 4.4 depicts the effect of each obfuscation tool on

all anti-malware products. The figure shows that the top anti-malware products are resilient

against Apktool/Jarsigner, ADAM, and Allatori. At the same time, DashO evades the top

anti-malware products more often than the other products.

We further assessed the variability of each obfuscation tool on our studied anti-malware

products, which indicates how consistently each tool affects the accuracy of those products.

To that end, we considered the interquartile range (IQR) of the box plots in Figure 4.4. IQR

is the difference between the lower bound and the upper bound of a box, which conveys the
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Table 4.6: Detection rate of anti-malware products (F-score (%)) against each obfuscation
tool
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AegisLab 96 83 79 66 53 9 13

Ikarus 94 95 95 88 82 80 71

CAT-QuickHeal 94 95 94 86 90 80 75

AVG 94 75 96 95 81 90 71

McAfee 94 90 79 68 19 37 31

ESET-NOD32 94 94 93 88 83 90 80

Fortinet 93 94 91 85 85 74 69

SymantecMobileInsight 93 86 88 86 82 72 51

Sophos 93 93 92 75 90 78 69

Avira 92 92 90 80 77 62 60

F-Secure 89 87 89 88 89 92 61

Comodo 88 88 65 25 14 23 20

GData 88 90 86 81 76 90 50

BitDefender 87 90 87 81 74 90 45

Emsisoft 87 90 86 81 74 90 45

DrWeb 87 88 86 88 77 81 89

Trustlook 84 10 37 39 0 0 2

Kaspersky 81 83 79 76 81 70 66

Antiy-AVL 78 79 72 69 16 23 25

Avast 75 75 71 67 77 60 58

TrendMicro 56 57 35 14 7 10 12

AVERAGE 87 83 80 73 63 62 51

central tendency of top anti-malware products against an obfuscation tool. A small IQR

indicates that the behavior of an anti-malware product is highly consistent. Figure 4.4 shows

that ProGuard has the largest IQR.
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Figure 4.4: (RQ2) The average detection rate of all anti-malware products regarding each
obfuscation tool.

ADAM and Apktool/Jarsigner, as shown in Figure 4.4, have a relatively high median, 88%

and 86%, respectively, with the lowest IQR, i.e., 9% and 13%, respectively. This indicates

that anti-malware products are resilient to these tools. Consequently, apps obfuscated by

ADAM and Apktool/Jarsigner work well for benign app developers, who would want to

obfuscate apps without having them be falsely reported as malicious, and would be least

useful for malware authors.

Finding 6: ADAM and Apktool/Jarsigner produce obfuscations that reduce anti-malware

product accuracy the least.

Figure 4.4 suggests that DashO is most successful at evading anti-malware products, which

aids malware authors. The average detection rate of anti-malware products on obfuscated

apps using DashO is 51% with a median of 58%—a 37% decrease in the average detection

rate, and a 32% median decrease.
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Finding 7: DashO reduces the accuracy of anti-malware products more than other

obfuscation tools in our study.

4.5.3 RQ3. Time-Aware Analysis

A significant factor that may interact with the effect of obfuscations on anti-malware product

accuracy is time. For RQ3, we conducted a time-aware analysis that studies the accuracy

of anti-malware products on original and obfuscated apps that belong to the same time

period for the past 10 years. Figure 4.5 depicts the results of this analysis. We grouped apps

into two-year time periods, due to the fact that some years only have a few apps, mainly

2009 with 29 apps, and 2017 with 130 apps. Similar to [55], we consider the year of the last

modified date of classes.dex in an app as the year from which it originates. We consider any

transformed app as belonging to the same year as its original version, in order to determine

the actual effect of obfuscation on product accuracy for each time period.

Figure 4.5: (RQ3) Time-aware analysis.
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For the original dataset, Figure 4.5 shows that the top anti-malware products maintain

similar detection rates for any two consecutive time periods prior to and including 2012-2013.

Unfortunately, there are significant decreases in the detection rate starting from the time

period between 2012-2013 and 2014-2015; the average detection rate is 70% for 2014-2015,

falling from 87% in 2012-2013. By 2016-2017, the average detection rate falls to 53% on the

original apps.

For the obfuscated dataset, Figure 4.5 illustrates that the detection rates of anti-malware

products decrease in a largely linear fashion. The average detection rate starts at 67% on

obfuscated apps from 2008-2009 and decreases to 39% on obfuscated apps from 2016-2017.

These results suggest that anti-malware products are slow to adopt signatures of malicious

apps.

The average detection rate on original apps from 2010 to 2013 are higher than the average

detection rate on older apps. This likely occurs because many malicious apps from 2010-2013

are well-known and highly disseminated among security analysts. For example, Android

Malware Genome is a dataset of malicious Android apps that are widely used, are described

in a highly cited paper [233], and were released in the 2010-2013 time period.

Finding 8: The average detection rates of anti-malware products tend to decrease over

time, indicating that such products are slow to adopt signatures of malicious apps.

4.5.4 RQ4. Valid, installable, and runnable apps

An obfuscated app is not useful for app authors, unless the app can run on a device. For

that reason, RQ4 measures the ability of obfuscation tools to generate valid, installable, and

runnable apps.
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Valid apps

Recall from Section 4.3, a valid obfuscated app corresponds to a signed APK package that

includes a classes.dex file containing the correct Dalvik bytecode syntax. Table 4.7 depicts

the ability of obfuscation tools to generate valid obfuscated apps, which we refer to as the

obfuscation rate. The obfuscation rate is measured using the ratio of the number of valid

apps generated by an obfuscation tool to the number of apps successfully retargeted to Java

bytecode. For example, ProGuard obfuscated 684 benign apps out of 1,688 successfully

retargeted benign apps, resulting in an obfuscation rate of 41% for benign apps. Similarly,

ProGuard obfuscated 1,021 malicious apps out of 2,005 retargeted malicious apps; hence,

ProGuard’s obfuscation rate on malicious apps is 51%.

Table 4.7 shows that DashO has the lowest obfuscation rate (30%) whereas DroidChameleon

achieves the highest obfuscation rate (60%). There are many reasons behind these low

obfuscation rates, including exceptions raised by obfuscation tools while transforming an app

and their inability to produce a valid obfuscated classes.dex file. For instance, Allatori raised

this exception “com.allatori.IiIIIIiiii: Only final fields may have an initial value!” on many

apps. We contacted the provider of Allatori about this exception, who informed us that this

problem has been reported by other users, but could not be reproduced. Consequently, we

helped them reproduce it to improve their product. They reported to us that this exception

is mainly caused by the use of dex2jar, although a fix for the exception is still in progress.

Table 4.7: The ability of obfuscators to generate valid APKs.

ProGuard Allatori DroidChameleon DashO ADAM

Benign 40.52% 25.77% 81.57% 13.39% 79.57%

Malicious 50.92% 58.70% 56.10% 43.24% 59.87%

Total 46.17% 43.65% 59.95% 29.60% 69.72%
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Installable and runnable apps

To measure an obfuscation tool’s ability to generate installable apps, we identified all original

apps that have at least one app transformed by each obfuscation tool. For each original app,

if there is more than one app transformed using the same obfuscation tool, we randomly

select one of them. Using that process, we randomly selected 250 original apps along with

their obfuscated versions, resulting in the selection of 1,750 obfuscated apps. We ran this

experiment on a MacBook Pro with a 2.2 GHz Intel Core i7 and 16GB RAM, and installed

the apps on an Android device. After we confirmed that all 250 original apps were successfully

installed on the Android device, we installed the obfuscated apps.

In addition to measuring app installability after obfuscation, i.e., the extent to which an

obfuscator can generate installable apps, we further measured app runnability after obfuscation,

i.e., the extent to which an obfuscator can generate runnable apps. For our study, a runnable

app can be order-agnostic or order-aware. A runnable app is order-agnostic if its obfuscated

version exhibits the same set of running components and exceptions as its original version; a

runnable app is order-aware if its obfuscated version exhibits the same sequence of running

components and exceptions as its original version. To determine app runnability after

obfuscation, we recorded the sequence of (1) components that execute and (2) exceptions that

occur during execution of an app using Monkey [40], a program that generates pseudo-random

streams of user events (e.g., clicks, touches, or gestures) and system-level events. We then

checked for equality of the sequences of running components and exceptions of an original

app and its obfuscated version, using 1,000 events for each app as input. We further ran

Monkey using the same random seed for each original app and its obfuscated version, in

order to test both app versions using the same sequence of inputs.

To conduct this experiment, we used the 250 original apps and the 1,341 successfully installed

apps from the previous experiment, i.e., the total installed apps mentioned in Table 4.8. To
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measure whether an obfuscated app runs successfully, we have modified and instrumented

the Android framework [29] to include probes for monitoring the running components. We

installed our modified Android framework on a Nexus 5X device.

Table 4.8 shows the ability of obfuscation tools to produce installable and runnable apps,

including the following information: the total number of obfuscated apps that we Examined

per obfuscation tool; the number of successfully Installed apps; the number of runnable apps

that are Order-Agnostic; and the number of runnable apps that are Order-Aware.

Table 4.8: Installable and runnable apps of each obfuscator.

Obfuscator Examined Installed Order-Agnostic Order-Aware

Jarsigner 250 249 248 150

Apktool 250 249 246 154

DroidChameleon 250 249 83 31

ProGuard 250 248 237 131

Allatori 250 213 188 122

ADAM 250 84 67 46

DashO 250 49 0 0

Total Apps 1,750 1,341 1,069 634

Many obfuscation tools produce installable apps. Our results demonstrate that almost all

apps transformed by Apktool/Jarsigner, DroidChameleon, and ProGuard have successfully

installed. In addition, only 37 apps obfuscated by Allatori have not installed successfully.

Moreover, Table 4.8 shows that most apps obfuscated using ADAM or DashO are not

installable. Successfully installed apps obfuscated using ADAM all utilize the ALIGN

transformation. All obfuscated apps using the non-trivial obfuscations of ADAM are not

installable.

The runnability of apps obfuscated using our studied obfuscation tools varies greatly depending

on the tool. Table 4.8 shows that almost all obfuscated apps using Jarsigner and Apktool

are runnable in an order-agnostic fashion. 249 apps obfuscated using DroidChameleon are
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installable; only 83 of those installable apps are order-agnostic and runnable; and only 31 of

those installable apps are order-aware and runnable. All apps transformed by DroidChameleon

using the ENC transformation are missing a function that decrypts encrypted strings, causing

these apps to crash at runtime and raise the error java.lang.NoClassDefFoundError. All

apps that become unrunnable after transformation by DashO raise the same error, i.e.,

java.lang.ExceptionInInitializerError. Given that DashO is not an open-source tool,

we could not investigate this problem further. Table 4.8 shows that 95% of the installable

apps generated by ProGuard are runnable. Likewise, 88% of the installable apps generated

by Allatori are runnable.

Finding 9: The percentage of obfuscated apps that are both installable and runnable in

an order-aware fashion with respect to component behaviors varies from 0%-62%. These

results suggest a significant need for improving obfuscation tools so that applying their

transformations retain an app’s original behavior.

4.6 Discussion

For anti-malware product vendors, our study suggests several areas for which anti-malware

products in general can be significantly improved. Recall that overall on our obfuscated

dataset, anti-malware products experienced a 20% decrease in their detection rate of malicious

apps compared to the original dataset (Finding 1). In particular, transformations that mainly

involved identifier-name manipulation (i.e., MAN, ENC IDR, and CF ENC IDR) substantially

affected obfuscation tools (Findings 3 and 5). Manifest-file transformations (i.e., MAN) that

simply involve addition of permissions that are not necessarily used or fake component

capabilities resulted in a 28% decrease, on average, for the top-performing anti-malware

products (Finding 3). Overall, these results indicate that anti-malware product vendors would
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significantly benefit from performing a deeper analysis into the code of an app, potentially

focusing on the security-sensitive code used by apps through static or dynamic analysis.

The importance of performing deeper analysis is further highlighted by (1) the fact that

transformations need not necessarily be combined to evade anti-malware products (Finding

4) and (2) this evasion worsens for newer apps (Finding 8).

For benign-app developers, our study provides some guidance as to how particular obfuscations

may be used. Specifically, we have found that reflection transformations tend to increase

significantly the possibility of a benign app being labeled as malicious. Therefore, benign

app developers may wish to avoid such transformations to avoid this false labeling, and to

reduce overhead exhibited by reflection. In the general case, benign-app developers need

not be overly concerned about their apps being falsely labeled as malicious when combining

obfuscations (Finding 4), except in the case of reflection transformations (Finding 2).

The major finding for obfuscation-tool developers is that our study indicates that many

of their transformations result in invalid, non-installable, or unrunnable apps (Finding 9).

Although some of that burden lies on benign-app developers to ensure that obfuscations they

apply do not adversely affect their apps, obfuscation-tool developers would benefit from aiding

benign-app developers in the task of ensuring their apps remain runnable after obfuscation.

We further examine the implications of the interaction between (1) obfuscations tools’ ability

to produce installable and runnable apps and (2) the anti-malware product detection rate

on malicious apps obfuscated using those tools. Figure 4.6 visually depicts the interaction

between these two phenomena. Obfuscation tools that lie on the upper-right corner of

the figure are preferred tools for benign app developers, obfuscation-tool providers, and

anti-malware vendors. These obfuscation tools reliably generate installable and runnable

apps while maintaining a high detection rate of malicious apps for anti-malware products. In

our study, no tool is above 80% for both its anti-malware detection rate and installability
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Figure 4.6: Anti-malware detection, installability, and runnability with respect to obfuscators

and runnability after obfuscation. Consequently, significant improvements can be made to

these tools along those dimensions.

Obfuscation tools that lie on the upper-left corner of Figure 4.6 are tools that exhibit

properties particularly useful for malware authors. These tools reliably generate installable

and runnable apps while evading the detection of anti-malware products. ProGuard is an

example of such a tool. Although few tools appear close to the upper-left corner of the chart,

malware authors are likely to expend the extra effort needed to ensure that their obfuscations

result in installable and runnable apps.

4.7 Threats to Validity

This section presents our study’s threats to external and construct validity, and the actions

we have taken to mitigate them.
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External validity measures the extent to which the results of our study can be generalized.

One threat to external validity for our study is whether our study’s findings can be generalized

to other apps outside of our study. To mitigate this threat, we obtained benign and malicious

apps from diverse sources that vary across application domains, in terms of app size, and

originate from various time periods.

To ensure our findings are likely to generalize to other obfuscation strategies and tools, we

employed 29 obfuscation strategies from 7 obfuscation tools—the largest number of strategies

and tools utilized to date for a study about app obfuscation. We further obtained obfuscation

tools that are academic, open-source, and commercial—aiding in generalizability to these

three different sources.

Another threat to external validity is our selection of anti-malware products. To mitigate

this threat, we have selected over 60 anti-malware products from VirusTotal, and focused on

the most popular and well-rated 21 products for our study. We make the results of our study,

along with the complete list of anti-malware products and apps, available online [37]. The

findings for the anti-malware products not discussed in this chapter are consistent with the

findings in this chapter.

Construct validity is concerned with whether our study’s measurements or measurement

procedures validly quantify the constructs or concepts we intend to quantify. A threat

to construct validity is the metrics and measurement procedures we used to quantify the

ability of obfuscation tools to produce runnable apps whose behavior before obfuscation is

similar to behavior after obfuscation. To measure these constructs, we compared the set or

sequence of running components and thrown exceptions of apps before and after obfuscation.

These measurement procedures and associated metrics are sensible given that components

are functional units of behavior—making them a sensible means of identifying high-level

behavior—and exceptions are the main means of identifying errors in apps whose test cases

and oracles are unavailable, which is the case for many apps on Google Play.
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Another threat to construct validity is the labeling of our apps as benign or malicious. To

mitigate this threat, our dataset of benign apps are marked as benign by over 50 anti-malware

products. Similarly, our malicious apps are obtained from repositories containing apps

manually labeled as malicious by security experts.

62



Chapter 5

Illustrative Example

To further motivate our research and illustrate our approach, this chapter provides an

example of an evolving Android system that consists initially of two apps: SuperPhone and

StayHealthy apps, illustrated in Figure 5.1.

The MakeCalls Activity in the SuperPhone allows a user to make phone calls and it stores

calls’ information in the CallsDB, a Content Provider component. The History Activity

queries the stored calls in CallsDB and lists them to a user. Making phone calls requires

CALL PHONE permission. The SuperPhone app has this permission, and hence all its

components acquire them as well.

StayHealthy is a fitness app that allows users to log their daily workouts, via the Exercises

Activity, and meals, via the Meals Activity. Both of these Activities are accessible from

the Home Activity. The Home Activity provides statistical information about the previously

recorded workouts and meals and allows a user to navigate to other screens in the app. The

LocTracker is a service that runs in the background and tracks the user’s location upon

receiving an Intent. Exercises uses LocTracker to draw a route map of a user’s workout

such as walking or cycling routes.
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Figure 5.1: Component-based architecture of an Android system consisting of two apps.

StayHealthy also allows a user to share his logged activities, either workouts or meals, with

friends by sending text messages. The Share Service sends spatial data, i.e., tagged data

with the current user’s location, as a text message to the phone number specified in the

received Intent. The Share Service is being used by both Exercises and Meals Activities.

Sending spatial text messages requires SMS and LOCATION permissions. The StayHealthy

app has these permissions, and hence all its components acquire them as well.

Listing 5.1 shows part of the Share’s program logic for sending text messages. On lines 5 and

6 of Listing 5.1, the Share service extracts the phone number and the message body from

the received Intent, respectively. On line 14, the extracted message body is annotated with

the current location and stored on the spatialMsg object. The extracted phone number

and the spatial message information is used in line 18 to send a text message. The Share

component is vulnerable to a privilege escalation attack since it performs a privileged task,

sending spatial text messages, without checking if the caller component has the required SMS

and LOCATION permissions to perform the task. An example of such a check is shown in

line 4 of Listing 5.1, but in this example it is commented.
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Listing 5.1: Vulnerable component, Share Service, sends a text message.
belowskipbelowskip belowskip1 public class Share extends Service {

belowskipbelowskip belowskip2 ...

belowskipbelowskip belowskip3 public int onStartCommand(Intent intent , int flags , int startId){

belowskipbelowskip belowskip4 //if (( checkCallingPermission (" android.permission.SEND_SMS ") == PackageManager.

belowskipbelowskip belowskipPERMISSION_GRANTED) && (checkCallingPermission (" android.permission.

belowskipbelowskip belowskipACCESS_FINE_LOCATION ") == PackageManager.PERMISSION_GRANTED)) {

belowskipbelowskip belowskip5 String phoneNumber = intent.getStringExtra("PHONE_NUMBER");

belowskipbelowskip belowskip6 String msg = intent.getStringExtra("MSG_CONTENT");

belowskipbelowskip belowskip7 LocationManager locMgr = (LocationManager) this.getSystemService(Context.

belowskipbelowskip belowskipLOCATION_SERVICE);

belowskipbelowskip belowskip8 Location myCurrentLoc = locMgr.getLastKnownLocation ();

belowskipbelowskip belowskip9 StringBuilder spatialMsg = new StringBuilder("-MSG -");

belowskipbelowskip belowskip10 spatialMsg.append(msg).append("@");

belowskipbelowskip belowskip11 if (myCurrentLoc != null){

belowskipbelowskip belowskip12 spatialMsg = spatialMsg.append(String.valueOf(myCurrentLoc.getLatitude ()))

belowskipbelowskip belowskip13 .append("/")

belowskipbelowskip belowskip14 .append(String.valueOf(myCurrentLoc.getLongitude ()));

belowskipbelowskip belowskip15 }

belowskipbelowskip belowskip16
belowskipbelowskip belowskip17 SmsManager smsManager = SmsManager.getDefault ();

belowskipbelowskip belowskip18 smsManager.sendTextMessage(phoneNumber , null , spatialMsg.toString (), null , null);

belowskipbelowskip belowskip19 //}

belowskipbelowskip belowskip20 ...

On the other hand, the LocTracker is a secure Service since it checks for the granted

permissions of the caller component. Such a check in Android can be achieved using the

checkCallingPermission API. Although Share is a vulnerable component in the Android

system illustrated in Figure 5.1, the current system is not actively threatened since no

component is exploiting this vulnerability.

At a later time, a user installs a new app called BrainTeaser, as shown in Figure 5.2.

BrainTeaser is a malicious app that challenges a user to solve mathematical questions

and then measures her intelligence quotient (IQ). The IQtest Activity displays questions

and communicates with the Qgenerator Service to get the next question. Qgenerator is a

malicious component that, once started, communicates with the Share Service of the StayHe

althy app. Since Share does not check if the caller components has the required permissions,

i.e., SMS and LOCATION permissions, this component is vulnerable to a privilege-escalation

ICC attack. Therefore, the communication between the Qgenerator and Share results in

exploiting this vulnerability which allows Qgenerator to leak the user’s location to any

premium rate number without having the proper permissions to perform such a task.
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Figure 5.2: Component-based architecture of an evolving Android system after installing
BrainTeaser app.

The attack described in this section is a legitimate scenario in the current implementation of

the Android platform [71]. Moreover, performing a complete analysis of all Android apps in

the system every time the system changes is neither efficient nor practical. We show how,

through a runtime monitoring and incremental analysis of the least-privilege architecture of

the system, SALMA can efficiently and effectively mitigate such a threat.
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Chapter 6

A Self-protecting Android Software

System

Figure 6.1 depicts a high-level overview of SALMA, a fully automated self-protection Android

software system. SALMA contains two layers, the protected layer and the protecting layer.

The protected layer consists of our modified Android framework and a set of apps that a user

installs on a device. The protecting layer realizes the IBM MAPE-K control loop [139]. As

explained in Section 2.1, MAPE-K consists of four components and a knowledge component.

The Knowledge contains an architectural model of the system. The Monitor observes the

system and keeps the model synchronized with the running system. The Analyzer assesses

the system for security threats. The Planner determines the best security policies, a.k.a.

adaptation tactics, to be enforced at runtime by the Executor.

Figure 6.1 depicts instantiations of each of the MAPE-K components in the protecting layer:

Monitor Extractor & Synthesizer, which is a Monitor ; Incremental Security Analyzer which

is an Analyzer ; Policy Synthesizer, which is a Planner ; and Policy Enforcer, which is an

Executor.
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Figure 6.1: Overview of SALMA.

Model Extractor & Synchronizer automatically obtains and maintains a precise runtime least-

privilege (LP) architectural model of an Android system. Model Extractor & Synchronizer

uses the LP Determinator web service (see Figure 6.1) to determine the initial LP architecture

of an Android system.

The LP Determinator web service of Model Extractor & Synchronizer , illustrated in Figure

6.2, consists of three steps (1) Architectural Elements Extractor uses static program analysis

techniques to elicit the system’s principal components along with their properties, latent

communications, and permissions usages from the apps comprising a system. (2) Privilege

Analyzer systematically examines each component to comprehensively determine its privileges,

the permissions it can use as well as components with which it can communicate, both inside

and outside the scope of its hosting app, as permitted by the Android runtime environment.

The result of this step is captured in a Multiple-Domain Matrix (MDM), representing the

original architecture of system. (3) Privilege Reducer determines the exact permissions and
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communications each component needs to fulfill its functionality. The derived information

is then captured in an MDM, representing the least-privilege architecture for the system.

Moreover, this step optionally allows a security architect to further modify the architecture

as needed to establish the proper privileges for each component.

Once Model Extractor & Synchronizer determines the initial LP architecture of an Android

system, Incremental Security Analyzer performs security analysis to check if the architecture

contains ICC attacks. In particular, Incremental Security Analyzer focuses on the prominent

ICC attacks described in Section 2.4. Next, while the system is running, when a change

occurs in the maintained runtime model (e.g., adding a new app, removing an existing app,

revoking a permission, etc.), the Incremental Security Analyzer (1) determines the impacted

part of the system due to that change, (2) runs a subset of security analyses that need to be

performed, and (3) updates the security posture of the system by either adding new potential

security attacks or removing existing threats.

Policy Synthesizer captures the determined initial LP architecture as a set of Event-Condition-

Action (ECA) rules. Moreover, Policy Synthesizer takes the analysis results computed by

the Incremental Security Analyzer and constructs security policies in the form of ECA rules.

The Policy Enforcer regulates interactions at the granularity of components through enforcing

the security policies and the LP architecture at runtime. It relies on various effectors that

we have added to the Android runtime environment, e.g., Prevent ICC, Prevent Resource

Access, etc., to check the conformance of ICC and resource-access transactions to the LP

architecture. The rest of this chapter describes SALMA in detail.
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Figure 6.2: The steps of LP Determinator of Model Extractor & Synchronizer to determine
the LP architecture of an Android system. An Android system could be compromising a set
of Android apps or even a single app.

6.1 Model Extractor & Synchronizer

Similar to other self-* software systems, SALMA leverages an abstract representation of the

software to manage and adapt the system at runtime. Prior research assumes these models

are developed prior to the deployment of software. Given the rich app ecosystem of Android,

this assumption does not hold, since users can install a variety of apps that are unknown a

priori. To address this challenge, Model Extractor & Synchronizer utilizes static and dynamic

analysis techniques to automatically obtain and maintain a precise LP architectural runtime

model of an Android system.

Unlike the default privilege management scheme in Android, where each component inherits

all privileges that are granted to its parent app, Model Extractor & Synchronizer grants

each component the exact privileges it needs to fulfill its functionality. Therefore, the LP

architectural model derived by Model Extractor & Synchronizer minimizes the attack surface

of an Android system. Hence, it is an ideal representation of an Android system to be

maintained at runtime.
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6.1.1 Determining the LP architecture

To derive the LP architectural representation of an Android system, Model Extractor &

Synchronizer asynchronously interacts with the LP Determinator , as shown in Figure 6.1,

a cloud-based web service that consists of three steps as shown in Figure 6.2 and further

discussed below.

Step 1: Architectural Elements Extractor

To obtain the system’s architecture, LP Determinator first needs to determine the principal

components that constitute the system, their properties, communication interfaces, and

permission usages. Such information is obtained from two sources, an app’s manifest file and

its bytecode.

LP Determinator utilizes APKtool [14], a reverse-engineering tool for Android APK files, to

recover an app’s manifest file. LP Determinator then parses the file to extract the components

of the app, their properties, their provided interfaces, the permissions that the app requires,

and the permissions that the app defines, if any.

Table 6.1 partially shows the extracted information corresponding to our running example

(recall Chapter 5). The Component Type column represents the particular type of a component,

which could be either Activity, Service, Broadcast Receiver, or Content Provider. The Exported

column indicates whether a component can be launched from outside its hosting app or not.

The Intent Filter column shows the interfaces provided by a component. Finally, the Granted

column shows the permissions requested by an app, and subsequently granted by Android to

all of its component. Among others, the five components of the StayHealthy app all have

access to both the SMS (android.permission.SEND SMS) permission and the LOCATION
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(android.permission.ACCESS FINE LOCATION) permission, given that the Messaging app

acquires the SMS and the LOCATION permissions.

Parsing the manifest file is not enough to obtain a system’s architecture, since a large

amount of information is latent in the app’s bytecode. For example, Broadcast Receivers

can be registered in code without declaring them in the manifest file. Components can also

programmatically define Intent Filters in code. In addition, all ICCs are latent in the app’s

bytecode. Components can communicate with one another in two ways: (1) using Unified

Resource Identifiers (URIs) to access the encapsulated data in Content Providers, and (2)

by sending Intents, either explicitly or implicitly. SALMA utilizes IC3 [160] to analyze

each app in the system and extract such latent information from its bytecode. IC3 is the

state-of-the-art static program analysis tool for Android.

For each Intent in bytecode, LP Determinator extracts the sender component, receiver

component, action, categories, and data. Moreover, the type of each extracted Intent is

indicated in the Intent column with prefixe for explicit Intent or i for implicit Intent. Similarly,

for each extracted URI in bytecode, LP Determinator extracts the sender component, receiver

Content Provider, and the type of the request. The URI request type can be either (1) a

database manipulation request, e.g., delete, insert, or update the encapsulated data in a

Content Provider, shown in the DBW column of Table 6.1 or (2) a database read request, e.g.,

querying the encapsulated data in a Content Provider, shown in the DBR column of Table 6.1.

Table 6.1 shows the remaining information collected in this way for our running example. It

is worth mentioning that if a communication between two components cannot be statically

extracted, i.e., a hidden communication either due to the use of code obfuscation (recall

Chapter 4) or dynamic class loading [173], this hidden communication will not be part of the

architectural elements table, i.e., Table 6.1.
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LP Determinator also identifies the permissions actually used by components. These are the

permissions that a component uses for (1) accessing a protected Content Provider, or (2)

calling a protected API. For the former, we have created a mapping between protected Content

Providers and the required permissions. For example, to read the contacts information from

Android’s Contacts Content Provider, a component needs android.permission.READ CONTACTS

permission. Using this mapping and the accessed Content Providers, our approach determines

the actually used permissions for a component. Since IC3 does not extract the permissions

used through API calls, for the latter case, LP Determinator leverages PScout permission

map [66], one of the most recently updated and comprehensive permission maps available for

the Android framework. It specifies mappings between Android API calls/Intents and the

permissions required to perform those calls. For example, Share component in StayHealthy

app uses the sendTextMessage() API for sending text messages (see line 18 of Listing 5.1),

which requires SMS permission. We thus consider this to be a permission that is actually

used by this component, as shown in the Used column of Table 6.1.

Finally, LP Determinator builds on a prior work [192] to extract the permissions enforced by

a component at two levels. While the coarse-grained permissions specified in the manifest file

are enforced by the Android runtime environment over an entire component, it is possible

to add permission checks, such as checkCallingPermission, throughout the code controlling

access to specific parts of a component (see line 4 of Listing 5.1). LP Determinator identifies

both types of checks. Since the Share component in the Android system illustrated in

Figure 5.1 does not perform any checks (line 4 of Listing 5.1 is commented out), the Enforced

column in Table 6.1 is empty for the Share component. Notice that since LocTracker is a

secure Service (recall Chapter 5), column Enforced of Table 6.1 show that this component is

enforcing the LOCATION permission.
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Step 2: Privilege Analyzer

The next step is to derive the overall system architecture from the information obtained for

individual components in the previous step. This is called the Original system architecture,

as it represents the architecture of system if it were to be deployed on the official Android

runtime environment. SALMA captures the architecture of an Android system as a Multiple-

Domain-Matrix (MDM)[149], which is a matrix representation of all relationship types (i.e.,

domains) among principal elements, such as components and permissions, in a system. An

MDM consists of multiple Design-Structured Matrices (DSMs) [203]. Each domain is modeled

as a DSM—a simple matrix that captures the relationships of one type.

For the purpose of security analysis, SALMA models an Android system using seven domains,

four component interaction domains and three permission domains. The four component

interaction domains in the MDM model of Figure 6.3 shows all potential component-to-comp

onent communications. Each non-empty cell in these domains indicates the fact that the

architecture of system allows for potential interaction between two components, either by

sending Intents or using URIs to access the encapsulated data in Content Providers. Rows

represent sender components; columns represent receiver components.

The explicit communication domain shows all potential component-to-component interactions

using explicit Intents. Allowed explicit communications are derived using the following rule.

Definition 1 (Allowed Explicit Communication). Let E be a set of all exported components,

and c1 and c2 be two arbitrary components in the system. We say that c1 can explicitly

communicate with c2, if either both components belong to the same app or c2 is an exported

component and c1 is granted the permissions enforced by c2:

canCommunicatee(c1, c2) ≡ (appc1 = appc2) ∨ (c2 ∈ E ∧ enforcedc2 ⊆ grantedc1)
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The Explicit Communication Domain in Figure 6.3 shows the result of applying Definition 1

to Table 6.1. According to the explicit communication domain, components 4, 5, 6, 7, and 8

can communicate with one another because they belong to the same app, as well as component

1 since it is exported, but not component 2. Components 1 and 2 can also communicate with

all the other components in the system.

The implicit communication domain shows all potential component-to-component interactions

using implicit Intents. Allowed implicit communications are derived using the following rule.

Definition 2 (Allowed Implicit Communication). Let F be a set of all declared public

provided interfaces, i.e., Intent filters, and c1 and c2 be two arbitrary components in the

system. We say that c1 can implicitly communicate with c2, if c2 defines a public provided

Interface and either both components belong to the same app or c1 is granted the permissions

enforced by c2:

canCommunicatei(c1, c2) ≡ c2.f ilters ⊆ F ∧ (appc1 = appc2 ∨ enforcedc2 ⊆ grantedc1)

The Implicit Communication Domain in Figure 6.3 shows the result of applying Definition 2

to Table 6.1. According to the implicit communication domain, all components in the

system can communicate with component 4 and component 8. Component 8 declares a

public provided interface for sending spatial text messages without enforcing any permission.

Component 4 is the main entry point for StayHealthy app, i.e., declares a public Intent

filter with android.intent.action.MAIN action. Moreover, none of the components in the

SuperPhone app, i.e., components 1, 2, and 3, can communicate with component 7 since its

enforcing the LOCATION permission to be granted to the caller component.

Note that the communication domain also includes interactions between the Android frame-

work and components of third-party apps. Android provides over 230 protected broadcast
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Intents that can only be sent by the system to the registered components. For example, when

a user installs an app, the system sends a broadcast Intent including the package name of

the newly installed app to all components that listen to the PACKAGE ADDED broadcast

Intent action. Figure 6.3 shows no such interactions with the system, as no component in

our running example is registered to receive protected broadcast Intents.

The data access domain shows potential component-to-content provider interactions for

reading (i.e., querying) stored data. Allowed data access communications are derived using

the following rule.

Definition 3 (Allowed Data Access). Let E be a set of all exported components, and c be an

arbitrary component in the system, i.e., c ∈ E, cp be a content provider, i.e., cp ∈ E. We say

that c can access the enclosed data in cp, if either both components belong to the same app or

cp is an exported content provider and c1 is granted the read access permission enforced by cp:

canAccess(c, cp) ≡ (appc1 = appcp) ∨ (cp ∈ E ∧ readcp ⊆ grantedc1)

The Data Access Domain in Figure 6.3 shows the result of applying Definition 3 to Table 6.1.

According to the data access communication domain, only the components in the SuperPhone

app can query the enclosed data in the CallsDB Content Provider since its enforcing the

C3R read access permission.

Finally, the data manipulation domain shows potential component-to-content provider in-

teractions for modifying (i.e., updating, inserting, or deleting) stored data. Allowed data

manipulation communications are derived using the following rule.
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Definition 4 (Allowed Data Manipulation). Let E be a set of all exported components,

and c be an arbitrary component in the system, i.e., c ∈ E, cp be a content provider, i.e.,

cp ∈ E. We say that c can manipulate the enclosed data in cp, if either both components

belong to the same app or cp is an exported content provider and c1 is granted the write

access permission enforced by cp:

canManipulate(c, cp) ≡ (appc1 = appcp) ∨ (cp ∈ E ∧ writecp ⊆ grantedc1)

The Data Manipulation Domain in Figure 6.3 shows the result of applying Definition 4 to

Table 6.1. According to the data manipulation communication domain, only the components

in the SuperPhone app can modify, i.e., insert, update or delete, the enclosed data in the

CallsDB Content Provider since its enforcing the C3W write access permission.

The three permission domains in the MDM model of Figure 6.3 represent the component-to-

permission relationships. Each non-empty cell corresponds to a permission that is either (1)

granted to a component, meaning that the component has that permission, as its hosting

app has requested the permission in its manifest file, (2) used by a component, meaning that

the component is actually making API calls, using protected URIs, or interacts with other

apps that require the permission, or (3) enforced by a component, meaning that either the

Android runtime environment or the component itself check the permission of callers (as you

may recall from Section 6.1.1 there are two ways of enforcing permissions in Android). The

permission domains in the MDM are populated based on the information obtained in the first

step (i.e., Granted, Used, and Enforced columns of Table 6.1). For example, the MDM shown

in Figure 6.3 indicates that the first three components are granted the PHONE permission,

while components 4, 5, 6, 7, and 8 are granted the location and the SMS permissions.
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Step 3: Privilege Reducer

The Original architecture derived in the previous step clearly violates the principle of least-

privilege. This step aims to derive the LP architecture by granting only the privileges required

by each component to fulfill its tasks.

LP Determinator uses the extracted inter-component communications (information in the

Intent and URI columns of Table 6.1) to determine the communication privileges that are

needed for each component to provide its functionality, and removes communication privileges

that are unnecessary. Then it models the LP architecture of an Android system in an MDM

of seven domains.
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Moreover, LP Determinator reduces the granted permissions for each component in the

Permission Granted Domain of the LP architecture using the following rule:

Definition 5 (Required Permission). Let c1 be a component, and usedc1 be a set of

permissions directly used by component c1. We define the required permissions for c1

as permissions either directly used by c1 or used by component c2 with which c1 communicates:

requiredPermissionsc1 = {p : Permission | ∃ c2 : Component • p ∈

usedc1 ∨ ((communicatee(c1, c2) ∨ communicatei(c1, c2)) ∧ p ∈ usedc2 ∧ p ∈ grantedc1)}

According to Definition 5, a component legitimately needs a permission in two cases: (1) the

permission is directly used by the component through, among other things, making protected

API calls or using protected URIs; (2) another component with which the given component is

interacting is using that permission. The latter may be a legitimate case, since a component

that uses a permission may require the calling component to also have that permission. In

fact, failing to check if the calling component has the necessary permission may result in a

privilege escalation attack.

In our running example, LP Determinator determines that the Share component has a

legitimate reason to hold the SMS and the LOCATION permissions, since it uses them. The

Exerciser component also has a legitimate reason to hold the LOCATION permission, since

the app it belongs to has these permissions and it communicates with the Share component

that uses these permissions. The MakeCall component, on the other hand, has a legitimate

reason to hold the PHONE permission since it uses that permission, while History and

CallsDB do not need it. The History component, however, does not need the LOCATION

permission, since it neither uses it nor does it communicate with a component that uses that

permission.
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The four component interaction domains in the MDM model of the LP architecture, shown in

Figure 6.4, represent the various component-to-component communications. Each non-empty

cell in these domains indicates that there is a communication between two components. The

explicit and the implicit communication domains show all allowed component-to-component

interactions using explicit and implicit Intents, respectively. Similarly, the data access and

the data manipulation domains show allowed component-to-content provider interactions

for reading (i.e., querying) and modifying (i.e., updating, inserting, or deleting) stored data,

respectively.

The explicit communication domain is derived using the following rule.

Definition 6 (Explicit Communication). Let E be a set of all exported components in the

system, I is a set of all extracted Intents in the system. Let c1 and c2 be two arbitrary

components in the system, i.e., {c1, c2} ⊆ E, i be an Intent, i.e., i ∈ I. We say that c1 can

explicitly communicate with c2, if i is sent by c1, i.e., i.sender = c1, and c2 is explicitly

specified in the Intent i as a target component, i.e., i.target = c2, and either both c1 and c2

belong to the same app or c1 is granted the permissions enforced by c2:

communicatee(c1, c2) ≡ ∃i ∈ I | i.sender = c1 ∧ i.target = c2 ∧ (appc1 =

appc2 ∨ enforcedc2 ⊆ grantedc1)

The explicit communication domain in Figure 6.4 shows the results of applying definition 6

to Table 6.1. For instance, as shown in Figure 6.4, the LP architecture allows the Home

component to communicate with the Exercise component (indicated by “ 1” in row 4,

column 5 of Explicit Communication Domain) since there is an explicit Intent between them

as illustrated in Figure 5.1. On the other hand, the LP architecture prohibits the Home

component to communicate with the MakeCall component.
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Similarly, the communications in the implicit communication domain are derived using the

following rule.

Definition 7 (Implicit Communication). Let E be a set of all exported components in the

system, I is a set of all extracted Intents in the system. Let c1 and c2 be two arbitrary

components in the system, i.e., {c1, c2} ⊆ E, i be an Intent, i.e., i ∈ I. We say that c1 can

communicate with c2, if i is sent by c1, i.e., i.sender = c1, and c2 is exporting an Intent

Filter that can handle i, i.e., match(i, c2.f), and either both c1 and c2 belong to the same

app or c1 is granted the permissions enforced by c2:

communicatei(c1, c2) ≡ ∃i ∈ I | i.sender = c1 ∧match(i, c2.f) ∧ (appc2 =

appc1 ∨ enforcedc2 ⊆ grantedc1)

The match(i, c2.f) function in Definition 7 performs Intent resolution [43] to check if there is

an Intent Filter declared by c2 that can handle the Intent i. The implicit communication

domain in Figure 6.4 shows the results of applying Definition 7 to Table 6.1. According

to Definition 7, component 5 implicitly communicates with component 7 since there is an

implicit Intent sent by Exercises in which LocTracker can handle (recall Figure 5.1.

The data access and the data manipulation domains are derived using the following rules.

Definition 8 (Data Access). Let E be a set of all exported components in the system,

DBR is the set of all extracted database read requests in the system. Let c be an arbitrary

component in the system, i.e., c ∈ E, cp be a content provider, i.e., cp ∈ E, and dbr be a

database read (query) request in the system, i.e., dbr ∈ DBR. We say that c can access

the stored data in cp, if c sends a database query (dbr) where the authority attribute of dbr
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matches the authority name of cp, and either c and cp belong to the same app or c is granted

the enforced read access permission by cp.

access(c, cp) ≡ ∃dbr ∈ DBR | dbr.sender = c ∧ dbr.authority = cp.authority ∧ (appc =

appcp ∨ readcp ⊆ grantedc)

To illustrate an instance of Definition 8 on the extracted database requests, i.e., DBR,

Figure 5.1 shows that component 2, History, accesses the stored data in component 3,

CallsDB—which is also reflected in Figure 6.4.

Definition 9 (Data Manipulation). Let E be a set of all exported components in the system,

DBW is the set of all extracted database write requests in the system. Let c be an arbitrary

component in the system, i.e., c ∈ E, cp be a content provider, i.e., cp ∈ E, and dbw be a

database write (insert, delete, or update) request in the system, i.e., dbw ∈ DBW . We say

that c can access the stored data in cp, if c sends a database manipulation request (dbw)

where the authority attribute of dbw matches the authority name of cp, and either c and cp

belong to the same app or c is granted the enforced write access permission by cp.

manipulate(c, cp) ≡ ∃dbw ∈ DBW | dbw.sender = c ∧ dbw.authority =

cp.authority ∧ (appc = appcp ∨ writecp ⊆ grantedc)

As an example of Definition 9, Figure 5.1 depicts component 1, MakesCall, updates the

stored data in component 3, CallsDB—which is further shown in Figure 6.4.

Finally, a security architect can adjust the resulting architecture by manually granting and

revoking permissions in the MDM. For example, a security architect can revise the privileges

85



granted to apps and their components based on their reputation. This capability could also be

useful in a forward-engineering setting, where an Android system is developed from scratch.

The amount of privilege reduction achieved through enforcing LP architecture can be quantified

by calculating the distance between the LP architecture (L) and the Original architecture

(O) as shown in Equation 6.1.

Reduction(O,L) = 1−
∑n

i=1

∑m
j=1 Lij∑n

i=1

∑m
j=1Oij

(6.1)

In Equation 6.1, i and j represent the ith column and jth row of an MDM with n rows

(components) and m columns (components and permissions). In our running example,

comparing the Original architecture (cf. Figure 6.3) with the LP architecture (cf. Figure 6.4)

shows 76.9% reduction in granted privileges.

6.1.2 Synchronizing the LP architecture

Extracting an architectural model of an Android system, as described in Section 6.1.1, and

use it to reason about the running system is not practical since Android systems are highly

dynamic software systems where a user can install/remove an app, grant/revoke permissions

to apps, etc. In all of these system changes, the determined LP architectural model becomes

Table 6.2: The Significant Events that SALMA Monitors.

ID Event ID Event

1 ADD APP 5 NEW IMPLICIT COMM

2 REMOVE APP 6 NEW EXPLICIT COMM

3 GRANT PERMISSION 7 NEW DATA ACCESS

4 REVOKE PERMISSION 8 NEW DATA MANIPULATION

86



an obsolete representation of the running system. Therefore, to keep the maintained model a

valid representation of the running system in spite of changes at runtime, Model Extractor

& Synchronizer maintains the model synchronized with the running system. Every time

the system changes, Model Extractor & Synchronizer reflects that change in the maintained

model.

Table 6.2 shows a list of the events (i.e., changes in the system) that Model Extractor &

Synchronizer tracks. In this paper, we refer to these events as significant events. For each

significant event, Model Extractor & Synchronizer receives a notification from the system and

updates the model accordingly. For example, when a user installs a new app, Model Extractor

& Synchronizer receives a system notification with the ACTION PACKAGE ADDED Intent

action. In this case, Model Extractor & Synchronizer communicates with LP Determinator to

obtain the architecture of the new app, i.e., LPnewApp; merges LPnewApp with LP ; and applies

Definitions 6–9 to add the new app to the current MDM. To avoid substantial analysis time

caused by running static analysis tools, the LP Determinator can analyze Android apps in

advance without waiting for a user to install an app.

In our running example, after a user installs the BrainTeaser app (see Figure 5.2), Model

Extractor & Synchronizer updates the maintained model. The MDM illustrated in Figure 6.5

displays the results of merging BrainTeaser with the current MDM, presented in Figure 6.4.

Figure 6.5 shows that IQtest explicitly communicates with Qgenerator, which implicitly

communicates with Share (see Figure 5.2).

To synchronize the runtime model with the system, Model Extractor & Synchronizer relies on

receiving system notifications from the sensors in Figure 6.1, indicating significant changes

that occur in the system. Some system notifications are already implemented in the Android

framework, such as ADD APP and REMOVE APP events. For these events, the framework

sends broadcast Intents with ACTION PACKAGE ADDED and ACTION PACKAGE REMOVED actions,

respectively. While in all other significant events, see Table 6.2, the framework silently
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executes the event. Therefore, we have introduced new system-generated broadcast Intents to

the Android platform. The new broadcasts inform Model Extractor & Synchronizer of certain

events whenever they occur in the system. Each system-generated broadcast Intent contains

information about a particular event. For example, in case a user grants a permission to an

app, the framework sends a GRANT PERMISSION broadcast Intent with the permission name

and the application package name.

6.2 Incremental Security Analyzer

Once Model Extractor & Synchronizer determines the initial LP architecture of an Android

system as described in Section 6.1.1, Incremental Security Analyzer performs security analysis

to check if the architecture contains ICC attacks. In particular, Incremental Security Analyzer

focuses on prominent security vulnerabilities due to the interaction of multiple apps (recall

Section 2.4). After that, since Android systems are highly dynamic software systems,

reanalyzing the entire system every time a change occurs is neither efficient nor scalable.

Therefore, SALMA incrementally analyzes the system whenever a change in the system

occurs. Our approach leverages the fact that a change in the system (1) impacts only part of

the system and (2) often requires running a subset of the security analyses on the impacted

part of the system. In Section 6.2.1, we describe the security rules that SALMA applies (1)

on the entire system for the first time or (2) on the impacted parts of the system after a

change in the system occurs to detect the potential security attacks presented in Section 2.4.

Section 6.2.2 describes how our approach determines the impacted parts of the system after

a change occurs.
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6.2.1 Security Rules

This section describes the security rules that our approach applies on the impacted parts of

the system. Each rule when applied on an interaction between two components would reveal

if that interaction is vulnerable to a given security attack.

Security Rule 1 (Unauthorized Intent Receipt). Let cm be a malicious component, cv be a

vulnerable component, and cx be a component that cv intends to send an implicit Intent i to.

cv and cx belong to the same app, and cx declares a provided interface, i.e., an Intent filter,

through which cv aims to communicate with cx using i. In an unauthorized Intent receipt, cm

can intercept i from cv by declaring a provided interface similar to the one declared by cx. As

such, cm may gain access to all enclosed data in any matching Intents meant to be received

by cx.

∃ communicatei(cv, cm) | (appcv 6= appcm) ∧ ∃ communicatei(cv, cx) ∧ (appcv = appcx)

Security Rule 2 (Intent Spoofing). Let cm be a malicious component, cv be a vulnerable

component, and cx be a component intending to communicate with cv. cv and cx belong to

the same app. cv declares a provided interface, i.e., an Intent filter, through which it aims to

communicate with cx. In Intent Spoofing, cm can send an Intent to cv over the Intent filter

and force cv to perform a nefarious action upon receipt of the Intent.

∃ (communicatee(cm, cv) ∨ communicatei(cm, cv)) | (appcv 6=

appcm) ∧ ∃ communicatei(cx, cv) ∧ (appcv = appcx)

Security Rule 3 (Privilege Escalation). Let p be a permission, cm be a malicious component

that is not granted p, and cv be a vulnerable component that is granted and uses p but does

not enforce the use of p as requested by other components. In privilege escalation, cm is able

to indirectly obtain p by interacting with cv.
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∃ (communicatee(cm, cv) ∨ communicatei(cm, cv)) | p ∈ used(cv) ∧ p 6∈ granted(cm) ∧ p 6∈

enforced(cv)

Security Rule 4 (Identical Custom Permission). Let pm be a custom permission defined by

malicious app appm, i.e., pm.definedBy = appm, and pv be a custom permission defined by

the vulnerable app appv, i.e., pv.definedBy = appv. Both pv and pm have the same permission

name, i.e., pv.name = pm.name. cm is a malicious component in appm that is granted pm.

cv is a vulnerable component in appv that enforces pv. In an identical custom permission,

cm can communicate with cv since pv.name = pm.name, even if pv and pm are semantically

different permissions.

∃ (communicatee(cm, cv) ∨ communicatei(cm, cv) ∨ access(cm, cv) ∨manipulate(cm, cv)) |

appcm 6= appcv ∧ pm ∈ granted(cm) ∧ pv ∈ enforced(cv) ∧ pv.name =

pm.name ∧ pm.definedBy 6= pv.definedBy

Security Rule 5 (Passive Data Leak). Let cpv be a vulnerable Content Provider that does

not enforce a read access permission, cm be a malicious component that accesses (queries) the

stored data in cpv. In a passive data leak, cm can passively disclose the sensitive data stored

in cpv.

∃ access(cm, cpv) | enforcer(cpv) = ∅

In Definition 5, enforcer(cpv) refers to the read access permission enforced by the Content

Provider cpv. In our approach, for each Content Provider component, we add two columns

in the permission domains of the MDM: one for the read access permission and the other

one for the write access permission. For example, each permission domain in the MDM

illustrated in Figure 6.5 contains two permissions for the CallsDB component, C3R for the

read permission and C3W for the write permission.

Security Rule 6 (Content Pollution). Let cpv be a vulnerable Content Provider that

does not enforce a write access permission, cm be a malicious component that changes
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(inserts, updates, or deletes) the stored data in cpv. In the content pollution attack, cm can

inappropriately manipulate the sensitive data stored in cpv.

∃manipulate(cm, cpv) | enforcew(cpv) = ∅

In Definition 6, enforcew(cpv) refers to the write access permission enforced by the Content

Provider cpv.

It is worth mentioning that all violations to the determined LP architecture are recorded

and accessible to the security architect through an Android app that we have developed, not

shown in Figure 6.1 to reduce the clutter in the figure. This app allows a security architect

to understand the running system and adjust the architecture as needed.

6.2.2 Change Impact Analysis

This analysis consists of two steps: (1) determining the impacted parts of the MDM and

(2) identifying the subset of the security analysis rules, formally specified in Section 6.2.1,

that need to be considered. More specifically, in step (1), Incremental Security Analyzer

determines the affected parts of the system by calculating ∆MDMe = MDMt2 −MDMt1,

where t2 is a time after an event e and t1 is a time before e.

Each cell in ∆MDM has a value of either −1, 0, or 1. −1 means a relationship in the

previous system has been removed after e, e.g., e is the revocation of a permission. 0 means

there is no change in that relationship before and after e. 1 indicates that a new relationship

is introduced due to e. For example, e may be the introduction of a new communication

between two components appearing at runtime due to installing a new app, updating an

existing app, dynamically loaded code, or execution of obfuscated code. From the affected

relationships, Incremental Security Analyzer determines the impacted domains. Applying
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∆MDM to our running system, described in Section 5.2, reveals that the communications in

rows 9 and 10 have been added to the system which belong to the explicit and the implicit

communication domains. Note that since BrainTeaser does not have Content Providers

nor does it interact with other Content Providers in the example system; as a result, both

the Data Access and Data Manipulation domains are not affected, and as such will not be

considered for the incremental analysis.

In step (2), ISA determines the subset of the security rules that need to be considered in

light of the affected domains. To that end, ISA uses Table 6.3, which is a lookup table that

maps each Security Analysis with the Involved Domains in that analysis. This table also

shows the security analyses that need to be performed when a specific domain changes. For

example, if the EXPLICIT domain changes, then Incremental Security Analyzer needs to

perform only 3 security analyses instead of all 6 security analyses.

In our running example where only the explicit and the implicit domains have been changed

after installing BrainTeaser, Table 6.3 indicates that the security posture of the system

should be checked against the following security attacks: Intent Spoofing, Unauthorized Intent

Receipt, Privilege Escalation, and Identical Custom Permission. Therefore, Incremental

Security Analyzer applies the security rules 1, 2, 3, and 4 (see Section 6.2.1) to all interactions

in rows and columns 9 and 10. Running these rules, mainly rule 3 on the communication

between Qgenerator and Share, reveals that the implicit communication in row 10 and

column 8 of Figure 6.5 is vulnerable to privilege escalation attack.

6.3 Policy Synthesizer

The Policy Synthesizer efficiently creates context-sensitive security policies to be executed at

runtime that capture (1) the initial LP architecture of the system (recall Section 6.1.1) and (2)
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Table 6.3: Security analyses lookup table.

Security Analysis Involved Domain(s)

Intent Spoofing
Explicit
Implicit

Unauthorized Intent Receipt Implicit

Privilege Escalation

Explicit
Implicit
Granted
Usage

Enforcement

Identical Custom Permission

Explicit
Implicit

Enforcement
Granted

Passive Data Leak
Data Access

Read Permission

Content Pollution
Data Manipulation
Write Permission

the security vulnerabilities determined by the Incremental Security Analyzer (recall Section

6.2.2). The created security policies, in our approach, follow the Event-Condition-Action

(ECA) rules paradigm suitable for rapid evaluation as the system executes. SALMA creates

ECA rules that, based on a particular system context, will be executed to prevent security

threats. More specifically, SALMA creates ECA rules to prevent the communication between

two components that are either (1) based on the LP architecture, not allowed to communicate

with one another or (2) involved in an identified security vulnerability. Moreover, SALMA

creates ECA rules to prevent a component from accessing protected system resources in case

that component is not granted sufficient permissions.
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6.3.1 Efficiently Generating ECA Rules

Event-condition-action (ECA) rules allow the system to automatically perform actions in

response to events given that the stated conditions hold. Each ECA rule reads as follows:

“when an event occurs, check the condition, if it holds, execute the action”. ECA rules make

the system efficiently adapt while the rules are stored in a single rule base instead of encoding

them in many modules, thus improving the maintainability and the manageability of the

system. ECA rules have been widely used in the literature, including self-adaptive systems

[130, 76, 142], active database [217, 166], implementing business processes [53, 86, 81], and

in the web technology [165, 75].

Since the identified LP architecture will be stored and monitored in resource-constrained

mobile devices in terms of a set of ECA rules, it is significantly important for such rules to be

efficient in a way that would minimize the number of required ECA rules. A näıve approach

for generating ECA rules that capture an LP architecture of n rows and m columns would

result in n×m ECA rules, where each cell is captured by an ECA rule. However, such an

approach results in the generation of a large number of rules, many of which are very similar.

SALMA generates ECA rules more efficiently. As for ICC ECA rules, i.e., the rules

that capture the explicit and implicit communication domains of an LP architecture, if a

component has no legitimate reason to communicate with any component of another app,

SALMA generates only one ECA rule that entirely prevents that particular component from

communicating with that app. This, in turn, reduces the number of generated ECA rules

from the number of components in the target app to merely one ECA rule. Similarly, if

no component of an app is allowed to communicate with any component of another app,

SALMA generates just one ECA rule that prevents all components of the former app from

communicating with components of the latter app. Generating ECA rules in this way not

only reduces the number of generated rules but also makes the search process for an ECA rule
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governing a specific component or a specific app faster. Once SALMA finds a coarse-grained

ECA rule, i.e., a rule that restricts one app from communicating with another app, SALMA

stops the search and executes the action specified in that ECA rule.

For example, the following ECA rule is produced, from the LP architecture shown in Figure 6.4,

to prevent the Qgenerator component from communicating with the LocTracker component:

Event: i ∈ ICC occurs

Condition: i.senderPkg = BrainTeaser ∧ i.senderComp = Qgenerator ∧

i.receiverPkg = StayHealthy

Action: prevent

In the case of resource access ECA rules, i.e., ECA rules that capture the Permission Granted

Domain, SALMA generates resource access ECA rules only for the granted permissions,

i.e., ECA rules that capture only the “1”s in the Permission Granted Domain. It is worth

mentioning that, in Android, it is possible for one permission to protect more than one system

resource. In such a case, SALMA generates more than one resource access ECA rule per

granted permission. For example, the android.permission.READ PHONE STATE permission

is required to request CARRIER CONFIG SERVICE in order to access the carrier configuration

values, and the same permission is required to request the TELEPHONY SERVICE to access the

TelephonyManager, which provides access to information about the telephony services on a

device.

As a concrete example, the following ECA rule is produced, from the LP architecture shown

in Figure 6.4, to grant LocTracker permission to access the LOCATION service:
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Event: resourceaccessrequest

Condition: requester = ListMsgs ∧ service = Context.LOCATION SERVICE

Action: allow

SALMA further tries to minimize the disruption that the security policies may cause. For

example, in the case of a potential privilege escalation attack, SALMA creates a security

policy to prevent a vulnerable communication instead of revoking the escalated permission

from the vulnerable app, as proposed in [184]. The later solution disrupts all components in

the vulnerable app from using that permission which may stop crucial services provided by

the disrupted components such as sending text messages or getting driving directions.

As a concrete example, since the communication between Qgenerator and Share is marked

as potential privilege escalation attack, SALMA creates the following ECA rule.

Event: i ∈ ICC occurs

Condition: i.senderPkg = BrainTeaser ∧ i.senderComp =

Qgenerator ∧ i.receiverPkg = StayHealthy ∧ i.receiverComp = Share

Action: prevent

6.4 Policy Enforcer

Policy Enforcer administers security policies at runtime through various effectors that we

have added to the Android runtime environment, as shown in Figure 6.1. Policy Enforcer

applies security policies by intercepting the ICCs (both the Intent-based and the URI-based

communications) and the resource access transactions to check if they are allowed or not.
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For Intent-based communication, Policy Enforcer can prevent or allow transactions. For the

URI-based ICC transactions, Policy Enforcer can prevent a component from accessing or

manipulating either (1) the entire Content Provider specified in the URI or (2) a specific

table or file in that Content Provider

The Policy Enforcer component extends the capabilities of the Android framework by

intercepting each ICC transaction passed to the ActivityManager—an Android component

that administers the ICC transactions—to check whether the transaction is allowed to run

or not. In case an ICC is prevented, Policy Enforcer records the transaction for further

inspection by a security analyst.

For example, at runtime, when Qgenerator tries to communicate with Share, the Android

framework passes the request to the ActivityManager which sends the ICC transaction’s

information (sender, receiver, and the Intent’s attributes) to the Policy Enforcer component.

After that, Policy Enforcer vets the ICC transaction in light of the stored ECA rules. If a

matched ECA rule is found, Policy Enforcer prompts the ActivityManager to execute the

associated action, i.e., prevent the communication in this particular example (recall Section

6.3.1).

As we explained in Section 2.2, components need permissions to access various system

resources. Such system resources are accessed via the Context component, an Android

component that holds information about the application environment and controls access

to resources. SALMA modifies Context to extract information from each resource access

request, and passes it to the Policy Enforcer to check whether the requester is allowed to

access the requested service.

For instance, when the Share component try to track user’s location, it tries to obtain a

handle to the LocationManager service, Line (7) of Listing 5.1. The Android framework

dispatches the request to the Context, which then sends the request to the Policy Enforcer.
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Upon receiving the resource access request, Policy Enforcer checks it against the ECA rules

and performs the corresponding action, i.e., allows the request in this particular case (recall

Section 6.3.1 ).

6.5 Implementation Details

As depicted in Figure 6.1, SALMA is a self-protecting Android software system that auto-

matically determines the LP architecture of an Android system and maintains it synchronized

with the running system. After that, when a change in the system occurs, SALMA incremen-

tally and efficiently analyzes the security posture of the system and creates security policies

to mitigate ICC attacks at runtime. We have implemented SALMA and its constituent

components for our experiments and make it available online for reproducibility and reuse

purposes [50].

As described earlier, the architecture extraction capability was built on top of several prior

static program analysis tools [160, 66, 71]. Each tool provides specific information that

SALMA uses to tailor the LP architecture. The derived LP architecture and results of

analysis are stored in a comma separated values (CSV) file. The implementation of SALMA

consists of more than 10,000 lines of code (LOC), not counting the existing tools on which it

relies.

The monitoring and the enforcement capabilities are implemented on top of the Android

Open-Source Project (AOSP) [29] version 6 (Marshmallow), API level 23. AOSP is the

open-source repository for the Android system maintained by Google. The enforcement

mechanism introduced a new package in the Android runtime environment. We also mod-

ified other components such as ActivityManager, ContextWrapper, ContentProvider, and

PackageManager. The total framework changes account for approximately 600 LOC. The
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changes were made such that any existing Android app could continue to run in our version

of Android runtime environment without modification. Moreover, our modifications to the

Android version 6 are not restricted only to this version and can be applied without technical

difficulties to any Android version.

We built the modified AOSP on an Ubuntu server with a 64-core AMD processor and 264GB

RAM. It took about an hour to complete the build process. We have successfully installed

the modified Android system image on a Nexus 5X phone and an Android emulator using

Android Fastboot tools [45] and Android debug bridge [42].

To make the MDM implementation more efficient and scalable, we have developed a Dynamic

Multiple-Domain-Matrix (D-MDM ), which is our enhanced variant of the traditional MDM.

Using a D-MDM, we are able to load and analyze a subset of the domains that are relevant

to the particular analysis at hand.

Finally, since the Android framework components do not provide graphical user interface

(GUI), we implemented an Android app that provides a GUI to (1) list the vulnerabilities

in the system, (2) allow a user to optionally add new security policies, and (3) allow a user

to visualize the synchronized model of an Android system in realtime using FireBase[49], a

Google realtime NoSQL cloud-hosted database service.
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Chapter 7

Experimental Evaluation

Our evaluation addresses the following research questions:

• RQ1. (Attack Surface Reduction) How effective is SALMA in reducing the attack

surface of Android systems and aiding the architect with understanding their security

posture?

• RQ2. (Efficiently Generating ECA Rules) How efficient is SALMA in generating

ECA rules that capture the determined LP architecture?

• RQ3. (Incremental Analysis Efficiency) How efficient is SALMA at incrementally

analyzing the security posture of Android systems compared to a complete analysis

approach?

• RQ4 (Disruption) How effective is SALMA at reducing the unnecessary disruption

caused by the enforcement of security policies to prevent permission-induced ICC

attacks?

• RQ5. (Attack Detection and Prevention) How effective is SALMA at detecting

and preventing security attacks in real-world apps?
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• RQ6. (Performance) What is the performance of SALMA?

We constructed datasets of benign, malicious, and vulnerable Android apps as shown in

Figure 7.1(a). The benign dataset is a collection of 370 apps, randomly selected from the

Google Play store, the official Android app market [35].

To prevent any bias in the results, we did not use any particular criteria, such as high ranking

or high downloads, in selection of the Google Play apps. Therefore, these apps vary in terms

of their 5-star ranking, as depicted in Figure 7.2 (a), as well as their number of downloads,

as depicted in Figure 7.2 (b).

The second dataset is a collection of 389 vulnerable apps identified in prior literature [144].

Finally, the malware dataset contains 225 apps obtained from various malware repositories

[233, 20, 153]. Figure 7.1(b) illustrates the distribution of apps from various malware

repositories that were used in our experiments.

7.1 RQ1. Attack Surface Reduction

By reducing the privileges granted to software components, SALMA focuses its analysis effort

on a narrowed set of interactions and it also helps security architects in comprehending the

security posture of Android systems. To evaluate the degree to which SALMA reduces the

attack surface of Android systems, we ran SALMA on 10 bundles of apps, each containing 30

non-overlapping apps. Each bundle contains apps randomly selected from the app datasets

as follows: 24 benign apps, 3 vulnerable apps, and 3 malicious apps. Figure 7.3 depicts a

histogram of the Google Play categories of the benign apps. Table 7.1 shows the structure of

the bundles.
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Figure 7.1: (a) Distribution of the entire experimental subjects across various repositories
from which the subject apps are downloaded; (b) distribution of apps from various malware
repositories that were used in our experiments.

Figure 7.2: The popularity of the Google Play apps in terms of their (a) 5-star ranking and
(b) number of downloads as of June of 2018.
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Table 7.1: Summary of app bundles, each bundle contains 30 apps.

Bundle Components
Intent Intent

Explicit Implicit Filter

Bundle 1 306 344 79 176

Bundle 2 432 468 379 287

Bundle 3 422 574 212 200

Bundle 4 449 348 370 511

Bundle 5 353 304 277 292

Bundle 6 541 890 476 4919

Bundle 7 562 412 38 324

Bundle 8 362 417 267 242

Bundle 9 265 180 98 166

Bundle 10 421 322 1231 185

Average 411.3 425.9 342.7 730.2

Avg. (per app) 13.7 14.2 11.4 24.3

Table 7.2: The Original and the LP architecture obtained from running SALMA over the
bundles.

Bundle
Communication Domain Permission Granted Domain

Original LP Reduction (%) Original LP Reduction (%)

Bundle 1 29,031 42 99.86 1,642 178 89.16

Bundle 2 78,237 625 99.20 2,954 143 95.16

Bundle 3 65,709 173 99.74 2,510 109 95.66

Bundle 4 80,372 205 99.74 4,234 146 96.55

Bundle 5 56,868 345 99.39 1,536 81 94.73

Bundle 6 85,556 661 99.23 4,461 329 92.63

Bundle 7 82,863 137 99.83 1,577 109 93.09

Bundle 8 50,208 250 99.50 1,946 92 95.27

Bundle 9 25,817 129 99.50 1,568 57 96.36

Bundle 10 50,001 74 99.85 2,386 127 94.68

Average 60,466.2 264.1 99.58 2,481.4 137.1 94.33

Avg. (per app) 2,015.5 8.8 99.56 82.7 4.6 94.47
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Figure 7.3: Histogram of Google Play categories.

Table 7.2 shows the number of entries in the Communication Domains as well as the Permission

Granted Domain for both the Original and LP architectures. To measure the degree to which

SALMA reduces the attack surface of Android systems, we used Equation 6.1. For example,

in bundle 1, the LP architecture contains 42 inter-app communication (IAC) and 178 resource

access permissions, whereas the Original architecture contains 29,031 IAC and 1,642 resource

access privileges. On average, across all bundles, 99.56% of IAC and 94.47% of resource

access privileges are reduced.

Recall from Section 6.2 that SALMA analyzes the initial architecture and pinpoints potential

ICC attacks including privilege escalations, unauthorized Intent receipts, and Intent spoofing

attacks. Tables 7.3 shows the number of potential privilege escalation ICC attacks, in both

the Original and LP architectures. For example, in bundle 5 in Table 7.3, the Original

architecture contains 26,914 possible privilege escalation attacks, whereas the LP architecture

contains only 2 such attacks that need investigation. On average, an analyst needs to verify
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14 potential privilege escalation security issues for a bundle of 30 apps using our approach.

In fact, in the case of bundles 1 and 4 in Table 7.3, all potential privilege escalation attacks

are already resolved with the LP architecture, eliminating the need for further investigation.

Similar patterns can be observed for Intent spoofing. Tables 7.4 shows the number of potential

Intent spoofing ICC attacks, in both the Original and LP architectures. For example, in

bundle 10, the Original architecture contains 2,015 potential Intent spoofing ICC attacks,

whereas the LP architecture contains only 1 potential Intent spoofing attack that needs

investigation. On average, an analyst needs to investigate 28 potential Intent spoofing for a

bundle of 30 apps using our approach.

In a similar fashion, Tables 7.4 shows the number of potential unauthorized Intent receipt

ICC attacks, in both the Original and LP architectures. For example, in bundle 10, the

Original architecture contains 214 potential unauthorized Intent receipt ICC attacks, whereas

the LP architecture contains only 3 potential unauthorized Intent receipt attacks that need

investigation. On average, an analyst needs to investigate 8 potential unauthorized Intent

receipt for a bundle of 30 apps using our approach.

Note that an analyst needs to verify less than 2 security issues per app on average. Even in

some cases, such as in bundle 1, all potential ICC attacks are already resolved with the LP

architecture, entirely eliminating the need for further investigation.

The results confirm the effectiveness of our approach in reducing the attack surface and hence

reducing the effort required to assess the security properties of an Android system.
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Table 7.3: Summary of Privilege Escalation ICC attack surfaces in both Original and LP
architectures across app bundles.

Privilege Escalation

Bundle Original LP
Reduction

(%)

Bundle 1 25,944 0 100.00

Bundle 2 35,601 110 99.69

Bundle 3 22,721 2 99.99

Bundle 4 33,551 0 100.00

Bundle 5 26,914 2 99.99

Bundle 6 24,745 2 99.99

Bundle 7 15,503 1 99.99

Bundle 8 27,663 14 99.95

Bundle 9 19,428 8 99.96

Bundle 10 16,953 3 99.98

Average 24,902.3 14.2 99.94

Avg. (per app) 498.0 0.3 99.94
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Table 7.4: Summary of Intent Spoofing ICC attack surfaces in both Original and LP
architectures across app bundles.

Intent Spoofing

Bundle Original LP
Reduction

(%)

Bundle 1 2,242 0 100.00

Bundle 2 1,980 65 96.72

Bundle 3 3,132 0 100.00

Bundle 4 4,020 57 98.58

Bundle 5 12,402 24 99.81

Bundle 6 1,416 17 98.80

Bundle 7 1,077 1 99.91

Bundle 8 6,283 115 98.17

Bundle 9 4,638 4 99.91

Bundle 10 2,015 1 99.95

Average 3,920.5 28.4 99.28

Avg. (per app) 130.7 0.9 99.28
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Table 7.5: Summary of Unauthorized Intent Receipt ICC attack surfaces in both Original
and LP architectures across app bundles.

Unauthorized Intent Receipt

Bundle Original LP
Reduction

(%)

Bundle 1 297 0 100.00

Bundle 2 204 21 89.71

Bundle 3 299 7 97.66

Bundle 4 599 4 99.33

Bundle 5 1,646 7 99.57

Bundle 6 33 24 27.27

Bundle 7 78 0 100.00

Bundle 8 297 4 98.65

Bundle 9 371 10 97.30

Bundle 10 214 3 98.60

Average 403.8 8 98.02

Avg. (per app) 13.5 0.3 98.02
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Table 7.6: Comparing the number of generated ECA rules between SALMA and the Näıve
approach.

Bundle
Communication ECA rules Pemission granted ECA rules

Näıve SALMA Improvement (%) Näıve SALMA Improvement (%)

Bundle 1 93,636 1,035 98.89 1,917 211 88.99

Bundle 2 186,624 1,534 99.18 3,573 257 92.81

Bundle 3 178,084 893 99.50 3,094 115 96.28

Bundle 4 201,601 1,416 99.30 5,556 161 97.10

Bundle 5 124,609 1,238 99.01 1,840 99 94.62

Bundle 6 292,681 1,687 99.42 5,593 344 93.85

Bundle 7 315,844 1,027 99.67 2,046 151 92.62

Bundle 8 131,044 1,039 99.21 2,307 92 96.01

Bundle 9 70,225 1,051 98.50 1,964 69 96.49

Bundle 10 177,241 1,069 99.40 2,794 172 93.84

Average 177,159 1,199 99.21 3,068 167.10 94.26

7.2 RQ2. Efficiently Generating ECA Rules

Table 7.6 compares the numbers of generated ECA rules by SALMA and the Näıve approach

(recall Section 6.3.1). For example, in bundle 1, the Näıve approach would generate 93,636

ICC ECA rules, whereas SALMA generates 1,035 ICC ECA rules showing more than 98%

reduction in the number of rules that need to be monitored. On average, for an Android

system with 30 apps, the Näıve approach would generate 177,159 ICC ECA rules, whereas

SALMA generates 1,199 ICC ECA rules to capture the communication domains in the LP

architecture.

Similarly, the Näıve approach would generate 1,917 resource access ECA rules for bundle 1,

whereas SALMA generates 211 resource access ECA rules for the same bundle. On average,

for an Android system with 30 apps, the Näıve approach would generate 3,068 resource

access ECA rules, whereas SALMA generates 167 resource access ECA rules to capture the

Permission Granted domain.
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The results presented in Table 7.6 confirm the efficiency of SALMA in generating ECA rules

to capture an LP architecture and hence reducing the time required to validate components’

communications and resource access requests at runtime.

7.3 RQ3: Incremental Analysis Efficiency

To measure the efficiency of SALMA’s incremental analysis, we compared the performance

of SALMA with DELDroid [123, 124], a prior approach that similar to our work analyzes

the architecture of an Android system for ICC vulnerabilities and enforces the determined

architecture at runtime. However, unlike SALMA, DELDroid is not capable of continuous

monitoring and incremental analysis of an evolving Android system.

Figure 7.4 contains box-and-whisker plots comparing the analysis time of each approach as

Android apps are added to the system. We started with an Android system of 120 apps and

added one app at a time until the system contained 150 apps. We randomly selected 120

apps from the benign dataset, 15 apps from the vulnerable dataset, and 15 apps from the

malicious dataset.

Every time an app is added to the system, SALMA incrementally analyzes the system

whereas DELDroid reanalyzes the entire system. As illustrated in Figure 7.4, the analysis

time of SALMA takes, on average, 2 seconds to incrementally analyze an Android system

whenever a new app is installed. On the other hand, DELDroid takes, on average, 75

seconds.

Figure 7.5 compares the analysis time of each approach with a decreasing number of apps.

We started with a bundle of 150 apps, then we removed one app at a time until the system

contained 120 apps. The average analysis time of SALMA is 0.2 seconds while the average

analysis time of DELDroid is 35.3 seconds. Note that Figures 7.4 and 7.5 show the analysis
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Figure 7.4: The analysis time of SALMA and DELDroid as Android apps are added to
the system.

results of adding/removing 30 apps, however, the project’s website [50] contains the analysis

results of an experiment of adding/removing 80 apps.

Due to the use of code obfuscation and dynamic class loading in Android apps, not all

communications can be discovered using static analysis tools. As a result, some communication

appears only at runtime, e.g., a new explicit or implicit communication. In such scenarios,

SALMA also incrementally reanalyzes the security posture of the system to determine if

the new communication poses any threat to the system. If so, SALMA prevents the new

communication. In addition to ADD APP and REMOVE APP, Figure 7.6 compares the efficiency

of SALMA and DELDroid with respect to other system events mentioned in Table 6.2.

SALMA takes, on average across all events, 1.6 milliseconds while DELDroid takes, on

average across all events, 63.8 seconds.

Overall, these results corroborate the efficiency and the scalability of SALMA in incrementally

analyzing Android systems.

112



Figure 7.5: The analysis time of SALMA and DELDroid as Android apps are removed
from the system.

7.4 RQ4: Disruption

Enforcing security policies at runtime by preventing permission-induced ICC attacks may

disrupt benign behaviors of an app. Permission-induced attacks are security breaches

enabled by permission misuse, i.e., privilege escalation, identical custom permissions, content

pollution, and passive data leaks. Preventing permission-induced attacks can be applied

at install-time or runtime [106]. Install-time approaches, such as Kirin [104], prevent the

installation of vulnerable apps. Runtime prevention approaches can either (1) prevent only

the malicious communication whenever it occurs, as performed in SALMA, DELDroid [124],

SEALANT [143], and SEPAR [72]; or (2) revoke permissions of vulnerable apps at runtime,

as in TERMINATOR [184] and AppGuard [68].

For this experiment, we analyzed a bundle of 150 apps, the apps used in RQ3, and found

that 40 apps are vulnerable to various permission-induced attacks. We then computed the

disruption in each vulnerable app caused by the enforcement of the various security policy
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Figure 7.6: The analysis time of SALMA and DELDroid with respect to the significant
system events mentioned in Table 6.2 other than ADD APP and REMOVE APP events.

mechanisms discussed earlier. Disruption of an app a is computed using the following equation:

disruption(a) = |compsdisr(a)|
|compstot(a)| × 100

Where compsdisr(a) is the set of components in app a that are disrupted and compstot(a) are

the set of all components in app a. We consider a component c to be disrupted if c uses a

permission p involved in a permission-induced attack, since c will be unable to provide its

full services if p is revoked.

As an example, consider an app av with 5 components where 3 of its components use

permission p to provide their services. One component using p is vulnerable to a privilege-

escalation attack. In this case, to protect the user, the install-time approaches prevent the

installation of av, disrupting all of its components, i.e., disruption(av) = 100%. On the other

hand, approaches that revoke permission will revoke p to prevent the attack, resulting in 60%

disruption of that app, i.e., 3 components will not be able to provide their full services due

to the lack of the required permission p. However, SALMA, which only prevents malicious
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Figure 7.7: Disruption results for each app

communication when it occurs, results in 0% disruption, since all components will be able to

provide their full services while keeping the system protected.

Figure 7.7 compares the three different permission-induced prevention mechanisms. The

diagram shows that SALMA has 0.4% disruption, meaning that SALMA does not disturb

components from providing their services except in one identical custom permission case.

In that case, SALMA created a security policy to revoke a custom permission from the

malicious app so it will not be able to access the vulnerable app. On the other hand,

the install-time approach performs the worst (100%), as it does not allow installation of

a vulnerable app. Finally, revoking permissions at runtime to prevent permission-induced

attacks would result, on average per app, in 32% disruption. Meaning that, on average, 32%

of the components in a vulnerable app will not be able to provide their full services due to

the lack of required permissions even though some of these components are not vulnerable or

involved in any vulnerability. Moreover, revoking permissions from apps at runtime lead to

crashes or unexpected behaviors due to inappropriate handling of dynamic permissions in

Android [185].
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DELDroid, SEPAR, SEALANT, and SALMA all attempt to prevent malicious commu-

nication whenever it occurs. However, unlike SALMA, the other three approaches assume

that all permissions are granted to all apps indefinitely. This assumption increases those

approaches false positives which, in turn, increases unnecessary disruption. For example, a

privilege-escalation vulnerability is not exploitable unless the escalated permission is granted

to the vulnerable app. However, the three approaches prevent vulnerable communication at

all times, while SALMA prevents vulnerable communication only when the system is at risk,

i.e., the permission is granted to the vulnerable app.

7.5 RQ5: Attack Detection and Prevention

To evaluate SALMA’s ability to detect and prevent security threats, we conducted a thorough

evaluation using malicious and vulnerable real-world apps with known security attacks, and

compared the detection and prevention results of SALMA with state-of-the-art approaches.

We included state-of-the-art approaches that are (1) publically available, (2) provide detection

and prevention mechanisms, and (3) extend the Android framework. To that end, we included

DELDroid [123, 124], SEPAR [72], and SEALANT [143]. DELDroid determines the

least-privilege architecture of an Android system and enforces it at runtime. SEPAR provides

an automatic scheme for formal synthesis and enforcement of Android ICC security policies.

SEALANT is a technique that combine static analysis with dynamic monitoring to detect

security vulnerabilities in Android apps and prevent ICC attacks.

To conduct this experiment, we used 188 malicious and vulnerable open-source apps for which

the steps and inputs required to create the attacks were known and documented. These

apps have been used in the evaluation of the included approaches. To validate the attacks,

we manually reviewed the code and affirmed the existence of security issues. In total, the

subject apps contain 94 ICC attacks where 45 of them are hidden attacks, i.e., the malicious
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code is not part of the apps’ bytescode but instead is loaded at runtime using the dynamic

class loading feature as described in [173], and the rest (49 attacks) are not hidden attacks,

i.e., the malicious code is part of the apps’ bytecode. We ran each approach on the subject

apps, then deployed the apps on the Android environment, and manually exercised all known

attacks. We report the number of detected and prevented attacks for each approach.

The Attack Detection column in Table 7.7 show the evaluation results of each approach for

detecting the security attacks. For example, SALMA and DELDroid detected all of the

20 privilege-escalation instances that are not dynamically loaded, i.e., not hidden attacks,

whereas SEPAR and SEALANT detected only 12 and 14 attacks, respectively. According to

Table 7.7, SALMA is able to detect all 94 attacks, including the hidden attacks, with no

false positives or false negatives, while the detection rate of the other approaches ranges from

16% to 30%.

Given the reliance of the included approaches on static program analysis to detect security

risks, all of them are unable to detect hidden attacks launched via dynamically loaded code,

see the gray area in Table 7.7. However, since SALMA incrementally analyzes the security

posture of the system in response to system changes, i.e., new inter-app communications

added at runtime as explained in Section 7.3, SALMA is able to detect these attacks at

runtime.

The Attack Prevention column in Table 7.8 shows the evaluation results of each approach for

thwarting the security attacks at runtime. SALMA is able to prevent all security attacks in

Table 7.8 at runtime while the prevention rate of the other approaches ranges from 15% to

55%. Interestingly, DELDroid is able to prevent some of the ICC attacks that it did not

detect, because it prevents all communications that are not part of the statically determined

architecture.
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Table 7.7: The ability of SALMA in detecting security attacks compared to the state-of-the-
art approaches.

Attack Type
Security Attack # Attacks

Attack Detection

(Count) DELDroid SEPAR SEALANT SALMA

N
ot

h
id

d
en

(4
9) Intent Spoofing 3 3 3 2 3

Unauthorized Intent Receipt 5 5 0 1 5
Privilege Escalation 20 20 12 14 20
Identical Custom Permission 7 0 0 1 7
Content Pollution 7 0 0 0 7
Passive Data Leak 7 0 0 0 7

H
id

d
en

(4
5)

Intent Spoofing 13 0 0 0 13
Unauthorized Intent Receipt 2 0 0 0 2
Privilege Escalation 9 0 0 0 9
Identical Custom Permission 7 0 0 0 7
Content Pollution 7 0 0 0 7
Passive Data Leak 7 0 0 0 7

Total attacks 94 28 15 18 94
Detection Rate 30% 16% 19% 100%

Table 7.8: The ability of SALMA in preventing security attacks compared to the state-of-
the-art approaches.

Attack Type
Security Attack # Attacks

Attack Prevention

(Count) DELDroid SEPAR SEALANT SALMA

N
ot

h
id

d
en

(4
9) Intent Spoofing 3 3 3 2 3

Unauthorized Intent Receipt 5 5 0 1 5
Privilege Escalation 20 20 12 14 20
Identical Custom Permission 7 0 0 1 7
Content Pollution 7 0 0 0 7
Passive Data Leak 7 0 0 0 7

H
id

d
en

(4
5)

Intent Spoofing 13 13 0 0 13
Unauthorized Intent Receipt 2 2 0 0 2
Privilege Escalation 9 9 0 0 9
Identical Custom Permission 7 0 0 0 7
Content Pollution 7 0 0 0 7
Passive Data Leak 7 0 0 0 7

Total attacks 94 52 15 18 94
Prevention Rate 55% 16% 19% 100%

118



7.6 RQ6. Performance

We measured the execution time of running SALMA on the 10 bundles of apps shown in

Table 7.1. These experiments were conducted on a MacBook Pro with 2.2 GHz Intel Core i7

processor and 16 GB DDR3 RAM. We repeated our experiments 33 times to achieve a 95%

confidence interval.

Table 7.9 summarizes the results. On average, for an Android system with 30 apps, it takes

less than 70 minutes to execute SALMA and obtain the ECA rules, but the great majority

of this time is spent in the one-time effort of recovering the architecture of an Android system

from its implementation artifacts. A less precise but more efficient forms of program analysis

could be substituted for architecture recovery, at the expense of a higher rate of false positives.

Since the security analysis is realized in terms of a set of mathematical operations on a

numerical matrix, it takes, on average, 2 milliseconds only to analyze the architecture.

After determining the initial LP architecture of an Android system, SALMA incrementally

determines the architecture of the running system. Table 7.10 shows the performance of

SALMA in merging an app to the runtime architectural model as well as removing an app

from the runtime architectural model. Note that, the performance time reported in the Merge

app to the model column of Table 7.10 does not include the time required to statically analyze

an app, which takes, on average, 2.3 minutes. To further improve SALMA’s efficiency at

Table 7.9: SALMA’s offline performance to determine, analyze, and capture the initial LP
architecture in ECA rules for an Android system with 30 apps.

Recovery LP Determination Analysis ECA Rules
(min) (sec) (sec) (sec)

Average 69.5 1.61 0.002 0.45

Std Dev 2.7 0.69 0.001 0.99
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Table 7.10: SALMA’s runtime performance.

Merge app Remove app Validating
to the model from the model ICC trans.

(second) (second) (second)

Average 0.024 0.026 0.0075
Std Dev. 0.027 0.028 0.0045

runtime, the static analysis time can be performed in advance without waiting for a user to

install an app.

Finally, to evaluate the runtime overhead of SALMA, we measured the time it takes to

check the ECA rules for an intercepted ICC transaction on a Nexus 5X phone. To that

end, we created a script that sends 363 requests (e.g., start an app, click a button) to an

Android system, simulating its use. Each request causes the system to perform an ICC of

some sort. We found that, on average, the performance overhead is 7.73 milliseconds with 4.5

milliseconds standard deviation, i.e., an 4.99% performance overhead as depicted in Figure

7.8. In Figure 7.8, the green area shows the ICC transactions time whereas the red area shows

the performance overhead. Most users cannot perceive delays of this magnitude, per Android

development guidelines [46], and thus, we believe SALMA poses an acceptable overhead.

7.7 Threats to Validity

This section presents the threats to validity of our experimental setup and our evaluation

results and the actions we have taken to mitigate these threats.

One threat to validity of our work is weather our results can be generalized to apps outside

our study. To mitigate this threat, we obtained benign, vulnerable, and malicious apps from

diverse sources. Benign apps vary across application domains (see Figure 7.3), application

popularity (see Figure 7.2), and in terms of app size [50]. The size of the apps vary from
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Figure 7.8: The performance overhead for validating ICC transactions.

1MB to 57MB as in the case of Gemmy Lands app [5]. Vulnerable apps have been discovered

and verified in a previous study [144]. Similarly, our malicious apps drawn from repositories

containing apps manually labeled as malicious by security experts.

Our selection of Nexus 5X phone to measure the runtime performance of SALMA can be

seen as a threat to validity, since the runtime performance using another Android device

might be different. However, since this device has been released in 2015, it is not the most

advanced Android device. Therefore, we believe that the reported performance would be

similar or even better using the currently available Android devices in the market.

Finally, the ability of SALMA in detecting and preventing security attacks depends on the

dataset that we used as a ground truth with known security attacks. To reduce this threat

and challenge SALMA, we did not use benchmarks with hand-crafted toy apps such as
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DroidBench [65] or ICC-Bench [6], instead we used a dataset with real-world Android apps

with known vulnerabilities created by experts from outside our research group.
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Chapter 8

Related Work

A large body of research has focused on Android security. This chapter provides a discussion

of the related efforts in light of our research.

8.1 The Effect of Code Obfuscation on Anti-malware

Products

We divide previous work related to our study presented in Chapter 4 into four categories:

(1) studies about similarity of a repackaged app with its original version, (2) obfuscation

strategies for PC and desktop software, (3) obfuscation tools specifically designed for Android,

and (4) studies about the effects of obfuscation on anti-malware products. In the remainder

of this section, we discuss each of these areas of related work and conclude the section with

the key differences between our study and the most similar related work.

Researchers have studied the similarity between original apps and repackaged apps. Huang

et al. [128] used Androguard [15], an Android reverse-engineering framework for malware
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analysis, to study the obfuscation resilience of repackaging detection algorithms. Faruki

et al. [108] compared the performance of anti-malware products and Androguard’s code

similarity with AndroSimilar [109], their tool for detecting obfuscated apps. Crussell et al.[96]

proposed DNADroid, a tool for detecting Android apps cloning. Similarly, Zhang et al. [224]

proposed ViewDroid, a user interface based approach for detecting repackaged apps. Wang

and Rountev describe an approach for determining which obfuscation tool was applied to an

obfuscated app [213].

A few studies have considered the application of obfuscation strategies in the context of PC

and desktop software. Collberg et al. produced a taxonomy of transformations for obfuscation

with a focus on Java [94]. Collberg et al. [93] also implemented a tool called SandMark

for evaluating the effectiveness of code obfuscation to protect Java-based software systems

from piracy, tampering, and reverse engineering. Christodorescu and Jha [91] evaluated the

resilience of anti-malware products against code obfuscation applied to Visual Basic programs

and proposed a semantics-aware malware-detection algorithm in [92].

Previous work has produced a few obfuscation tools specifically designed for Android apps.

Zheng et al. [229] proposed ADAM, a framework for obfuscating Android apps and testing

them on anti-malware products. They evaluated ADAM’s effectiveness for evading 10

anti-malware products on 222 transformed, malicious apps. Rastogi et al. [180] presented

DroidChameleon, a tool for obfuscating Android apps, and assessed obfuscations on six apps

from Android Malware Genome [233].

Another set of studies focused on the effects of obfuscations on anti-malware products, without

proposing new obfuscation tools. Maiorca et al. [154] studied the effects of code obfuscated

by a single tool on 13 anti-malware products. Pomilia [175] studied the performance of 9

anti-malware products on a dataset obfuscated using Allatori. Morales et al. [156] studied

the resilience of 4 anti-malware products after transforming 2 viruses on Windows Mobile OS.
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All the aforementioned previous work that have studied either obfuscation tools or the effects

of obfuscation strategies on anti-malware products focus on a single obfuscation tool and a

small number of anti-malware products and apps. None of these studies have performed a

large-scale empirical study considering the effects that occur due to the concurrent utilization

of anti-malware products, various obfuscation tools, and their supported obfuscation strategies.

None of these studies assessed these effects on benign apps; the effects of combining obfuscation

strategies; and the ability of obfuscation tools to produce valid, installable, and runnable

apps.

8.2 Security Attack Detection

Numerous static analysis approaches have been proposed in the literature for detecting ICC

attacks in Android systems [71, 140, 144, 89, 215, 151, 221, 161].

COVERT [71] presents an approach for compositional analysis of Android inter-app vul-

nerabilities. DidFail [140] introduces an approach for tracking data flows between Android

components. Similarly, IccTA [144] leverages an Intent resolution analysis to identify inter-

component privacy leaks. Amandroid [215] is a taint static analysis tool that builds Inter-

component Data Flow Graph (ICDFG) and Data Dependency Graph (DDG) and use them for

detecting Intent-based data leak and data injection. It does not analyze Content Providers

or consider some calls such as bindService or startActivitiesForResults. CHEX [151]

is a static analysis tool mainly to detect component hijacking, a type of unauthorized In-

tent receipt, vulnerabilities in apps. IccDetector [221] is an ICC-based malware detection

in Android. It statically extracts ICC information and uses them as features to train a

machine-learning classifier. Epicc [161] computes ICC call graph after retargeting the Dalvik

bytecode to java bytecode using Dare [159]. FlowDroid [65] is another precise static taint

analysis approach for Android apps. Chin et al. [89] discussed several ICC attacks that can
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be achieved through receiving an Intent by unauthorized receipt or spoofing an Intent, and

they have provided ComDroid, a tool that is meant to be used by developers to analyze

their apps before releasing them. ScanDroid [113] is a data-centric static analysis tool for

reasoning about the data flow in Android apps; it creates security specifications from the

app’s manifest file. More recently, LetterBomb [115] presents an approach for automatic

exploit generation for vulnerabilities exposed in an Android app’s Intent-based interface.

Other dynamic analysis tools also have been proposed to help detecting ICC vulnerabilities in

Android apps such as TaintDroid [103] and CopperDroid [206]. TaintDroid [103] is a dynamic

analysis tool that tracks data from sensitive sources to sensitive destinations and provide

these information to users so they can understand how their sensitive data are being used by

various apps. CopperDroid [206] is an automatic virtual machine introspection or VMI-based

dynamic tool for reconstruction of Android malware behavior. It provides behavioral profiling

of malicious Android apps.

Moreover, other researchers proposed hybrid approaches to facilitate detecting ICC vulnerabil-

ities including SmartDroid [228], Dr.Android [134] and ProfileDroid [216]. SmartDroid [228] is

a hybrid approach for detecting graphical user interface (GUI) actions that triggers behavior

similar to a malicious behavior found in a previously known Android malware. Dr. Android

[134] proposed a fine-grained permission system instead of the current coarse-grained permis-

sion system in Android. It requires modification to apps’ implementation logic. ProfileDroid

[216] proposed a design for profiling Android apps in four layers: static analysis, user layer,

OS layer, and network layer.

Finally, Schmerl et al. [192] describe an architectural style for Android in ACME [118] that,

among other capabilities, supports analysis of certain security properties. This work utilizes

COVERT for performing security checking and hence they share the same limitation. Unlike

SALMA, their work does not provide a mechanism for determining the LP architecture, nor

does it provide any runtime enforcement mechanism.
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While these research efforts are concerned with the analysis of information/permission leakage

between Android apps, they do not really address the problem that we are addressing, namely

the automated determination and the dynamic analysis and enforcement of least-privilege

architecture in Android. Unlike SALMA, all of these approaches cannot detect ICC attacks

conducted through dynamic class loading. Moreover, they do not generate nor enforce security

policies, as performed by SALMA. SALMA, to our knowledge, is the first tool with this

capability.

8.2.1 Security Attack Prevention

DELDroid [124, 123] is an approach that determines the least-privilege architecture of an

Android system and enforces it at runtime. Similar to SALMA, DELDroid analyzes the

architecture of an Android system for ICC vulnerabilities and modifies the Android platform

to enforce the determined architecture. Unlike SALMA, DELDroid is a design-time solution

that (1) does not change the derived architecture as the system evolves; (2) assumes that

all permissions are granted to apps indefinitely, which increases disruption; and (3) assumes

that all hidden communications are malicious, which further contributes to disruption.

Other approaches, such as [106, 104, 72, 143, 184], statically analyze Android apps and dy-

namically enforce security policies to prevent ICC attacks. Felt et al. [111] studied permission

re-delegation security attacks (aka, privilege escalation) in mobile systems and web browsers;

they showed the wide spread of this attack and provided an IPC inspection mechanism to

prevent such attacks. IPC-Inspection is an OS mechanism for preventing privilege-escalation

attacks by reducing the permissions assigned to an app when it communicates with an app

having fewer privileges. Kirin [104] extends the application installer component of Android’s

middleware to check the permissions requested by applications against a set of security rules.

These predefined rules are aimed to prevent unsafe combination of permissions that may
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lead to insecure data flows. Kirin detects security vulnerabilities by only analyzing an app’s

configuration file and preventing the installation of vulnerable apps.

SEPAR [72] is a tool for automatic synthesis and enforcement of security policies allowing

the end-users to safeguard the apps installed on their devices from ICC attacks. SEPAR’s

policy enforcement relies on the Xposed framework [52] that requires root access to the device.

SEPAR [72] and SEALANT [143] rely on the analysis results generated by COVERT [71]

to prevent ICC attacks at runtime. TERMINATOR [184] performs temporal analysis for

preventing permission-induced ICC attacks. All of these tools do not update their models once

the system changes. Moreover, unlike SALMA, these approaches cannot prevent malicious

hidden behaviors.

While the above techniques rely on static program analysis to detect security risks and

prevent them at runtime, another set of approaches leverage dynamic analysis techniques

to detect and prevent security attacks [127, 100, 162, 82]. AppFence [127] prevents apps

from exfiltration of data outside the device. Especially for advertisement components that

ship a user’s data outside the device. It allows a user to mock the sensitive data or block

network transmission. Saint [162] extends the functionality of Kirin to allow for install-time

permission assignment and their run-time use as specified in the policies provided by an app’s

developer. XManDroid [82] presents a solution for privilege-escalation attacks by restricting

communication at runtime between applications that could lead to dangerous information

flows based on Chinese Wall-style policies [79] (e.g., forbidding communication between an

app with GPS privileges and an app with Internet access).

Kynoid [193] performs a dynamic taint analysis over a modified version of Dalvik VM. Deep-

Droid [211] presents an enforcement extensions based on dynamic memory instrumentation

of system processes. ASM (Android Security Modules) [125] is a framework that provides a

programmable interfaces for defining reference monitors for Android similar to the proposed

reference monitors for Linux [157] and TrustedBSD [214].
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While SALMA automatically analyzes the system and creates security policies to prevent

ICC attacks, all of these dynamic analysis tools depend upon defining security policies by

developers and they require modifications to apps’ implementation logic. Defining security

policies by developers are error prone and time consuming.

The research effort presented in this section share with ours the emphasis on dynamic enforce-

ment of security policies. SALMA differs fundamentally in its emphasis on both providing

an architectural solution and automatically adjusting the privileges at the architectural level

as needed at runtime.

8.3 Enforcing the Least-Privilege Principle

The importance of enforcing the principle of least-privilege was introduced in the seminal

work of Saltzer et al. [187], and is well recognized by many researchers. Notably, Scandariato

et al. [191] lays the formal definition of the least-privilege violation and provides a technique

to identify such violation in UML models. To the best of our knowledge, SALMA is the first

solution capable of automatically recovering the architecture of an Android system to derive

and enforce an LP variant of it.

The importance of limiting the privileges assigned to Android components have also been

discussed in the literature [137, 198, 212, 195, 100, 200, 168]. Kantola et al.[137] described

heuristics to allow the Android framework distinguish between inter-app and intra-app com-

munications and hence detect any unintentional inter-app communication. Unlike SALMA,

the proposed heuristics are not totally backward compatible with the existing apps and

they require modifications by the apps’ developers. Shehab and AlJarrah [198] proposed

a policy-based approach for controling the access of different pages in web-based Android

apps to mitigate potential attacks. However, unlike SALMA, their approach requires source
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code and it is limited only to web-based multi-page apps generated by the Apache Cordova

framework [44]. Wang et al. [212] proposed Compac, an approach for reducing the permissions

assigned for third-party components in an app. Similar to Compac [212], FlexDdroid [195]

is an Android security model and isolation mechanism for limiting the permissions granted

to third-party libraries.

Dietz et al. [100] presented Quire, an approach that adds two security mechanisms into

Android to prevent privilege escalation attack. The first security mechanism tracks the inter-

process communications (IPCs) in a device to either allow an app to run with reduced privilege

of its caller or with its full privileges by acting explicitly on its own behalf. The second security

mechanism allows an app to create a signed statement that can be verified by any app on the

same phone. Shekhar et al. developed AdSplit [200] on top of Quire. AdSplit is an approach

that runs an advertising library and its hosting app in separate processes with different

user identifiers. This separation eliminate the need for an app and its advertising library

to share the same permissions. Similar to AdSplit, AdDroid [168] introduces advertising

API and corresponding advertising permissions as part of the Android platform. AdDroid

allows for permission separation between advertising libraries and their hosting apps. Unlike

SALMA, these approaches do not control interactions among components and they also

require developer intervention to modify their apps, significantly hindering their adoption in

practice.

8.4 Modeling Architectures using Matrices

The other relevant thrust of research has focused on studying DSM for modeling and analysis

of complex systems. The study on matrices (DSM [203] and MDM [149]) for modeling the

architecture of a complex system is also related to our work.
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Xiao et al. [188] used the DSM to capture the architecture of a complex system and analyzes it

to find architectural debts. Browning [80] discussed various usage of the static and time-based

DSMs for decomposing and integrating a system. Sangal et al. [189] implemented the LDM

tool that applies the DSM to manage complex software architectures. Similar to SALMA,

LDM extracts the architecture using conventional static analysis tools and captures it using

a set of ‘design rules’. Unlike SALMA, LDM targets conventional software systems not a

modern mobile software system such as Android, hence the challenges and the approach are

different.

Besides the aforementioned differences, all the security analysis approaches mentioned in this

chapter take substantial amount of time to run every time a change in the system occurs and

hence they all lack the ability to efficiently analyze systems with incremental changes.

131



Chapter 9

Conclusion

The systematic violation of the least-privilege principle in Android is the root cause of many

types of Inter-Component Communication (ICC) attacks. These attacks have been widely

discussed in the literature [89, 173, 99, 111, 70, 135]. Unfortunately, the Android platform

at the moment cannot prevent these kinds of attacks, as they do not violate the security

mechanisms supplied by Android. Moreover, these attacks cannot be effectively handled

by the state-of-the-art security analysis tools, both the static and the dynamic analysis

approaches, since malware authors use sophisticated tactics to obfuscate their malicious code

to evade their detection.

To effectively address the systematic violation of the least-privilege principle, this dissertation

presents a novel approach for automatically determining the least-privilege architecture of an

Android system and its enforcement at runtime without the need to modify the existing apps.

The approach combines static program analysis techniques to determine the least-privilege

architecture of an Android system and use it to reason about the running system, with

dynamic monitoring to maintain the architecture synchronized with the running system and

enforce it at runtime. This approach has been implemented in a tool called SALMA.
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SALMA is an automated self-protecting Android system that monitors itself and adapts

its behavior at runtime to prevent ICC security risks. SALMA maintains a precise least-

privilege architecture, represented as a Multiple-Domain-Matrix (MDM), and incrementally

and efficiently analyzes an Android system in response to incremental system changes. The

maintained architecture is used to reason about the running Android system. Every time

the system changes, e.g., adding a new app, removing an existing app, granting/revoking

a permission, etc, SALMA determines (1) the impacted part of the system, and (2) the

subset of the security analyses that need to be performed, thereby greatly improving the

performance of the approach.

The least-privilege architecture narrows the attack surface of an Android system, making

it easier to evaluate its security posture, and thwarts certain class of ICC security attacks.

SALMA leverages static program analysis to determine the exact privileges each component

needs to fulfill its task from its implementation logic. SALMA adds a privilege management

layer to the Android platform to continuously enforce the maintained LP architecture.

Our experimental results on hundreds of real-world apps corroborate the efficiency and

scalability of SALMA as well as its ability to detect and prevent ICC security attacks with

minimal disruption. My research artifacts, including tools, presentation slides, and evaluation

data, are available publicly [10].

9.1 Research Contributions

To summarize, this dissertation makes the following contributions:

• Theory. This dissertation shows that the over-privileged nature of Android is the root

cause of many ICC security attacks. These ICC attacks cannot be effectively handled

by the current Android platform nor by the state-of-the-art security analysis tools,
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both the static and the dynamic analysis approaches. To the best of our knowledge,

SALMA is the first self-protecting Android system that can monitor, incrementally

analyze, and automatically enforce the least-privilege architecture of an Android system

to prevent a wide range of ICC attacks at runtime.

• Formal description. Formally describes the least-privilege architecture of an Android

system, specified in relational logic, and models it as a Multiple-Domain-Matrix (MDM).

Moreover, this dissertation provides formal descriptions of ICC security attacks which

SALMA uses to analyze the MDM and identifies potential security threats.

• Experiments. Empirical evaluation of SALMA on hundreds of real-world Android apps

demonstrating its scalability and efficiency in incrementally analyzing Android systems

and alleviating their security threats with minimum disruption.

• Tool. the research artifact, including tools and evaluation data, available publicly [50];

• Dataset. To evaluate SALMA, we used hundreds of benign, malicious, vulnerable,

and obfuscated Android apps. We make this dataset available for researchers and

practitioners [50].

• Required Android Platform Modifications. This dissertation describes the needed

modifications to the current Android platform to maintain, analyze, and enforce the

least-privilege architecture of an Android system.

9.2 Future Work

Android components are increasingly shipped with native binaries that are shown to have

memory-based vulnerabilities (e.g., buffer overflow) [59]. Modeling native code in MDMs,

building associated security rules for native-code vulnerabilities, and modeling the interaction

among managed and native code in MDMs can provide further attack detection and prevention,
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but complicate analyses and may lead to scalability issues. Such challenges are interesting

avenues of future work.

Moreover, beside intent-based and URI-based communications, components can launch

ICC attacks using either Remote Procedure Call (RPC) or issuing notifications from a

component in a handheld device (e.g., a smartphone) to a component in a wearable device

(e.g., smartwatch). Detecting and preventing ICC attacks based on RPC or notification-based

communications is beyond the scope of this dissertation but indeed an interesting avenue of

future work.

To determine the exact privileges each component needs, SALMA relies on the information

that are latent in apps’ bytecode and assumes that all apps have the same level of trust.

Knowing the trustworthy of apps and use these information to tailor the least-privilege

architecture would enhance the architecture and reduces possible false positives. My future

research would involve implementing an approach that can determine the trustworthy of

components with high accuracy.

Finally, since the theoretical contribution of determining and enforcing the least-privilege

architecture in Android is applicable to many frameworks with a privilege-based scheme,

one can investigate the applicability of the pesented approach in this dissertation to other

platforms that use privilege-based security model, such as Chromium and Firefox web

browsers.
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Appendix A

Malware Detection and Family

Identification Using Machine Learning

Chapter 4 shows, using a large-scale empirical study, that the average detection rate of

anti-malware products decreases by 20% and up to 90% due to the use of code obfuscation.

Therefore, the current anti-malware products are insufficient in protecting smartphone users

against the increasing number and sophisticated malicious apps.

To address these limitations, this chapter presents a novel machine learning-based Android

malware detection and family identification approach, RevealDroid, that operates without the

need to perform complex program analyses or to extract large sets of features. Specifically,

our selected features leverage categorized Android API usage, reflection-based features, and

features from native binaries of apps.

The evaluation of RevealDroid using a large dataset consisting of more than 54,000 malicious

and benign apps shows the accuracy and the resiliency of RevealDroid against code obfuscation.

The experimental evaluations show that RevealDroid achieves an accuracy of 98% in detection

of malware and an accuracy of 95% in determination of their families.

155



A.1 Introduction

Mobile devices have become ubiquitous, and are still growing quickly. Among such devices,

Android has become the dominant platform and is deployed on hundreds of millions of

devices around the world. With this widespread usage, an increasing number of malware

applications (apps) have been found on such devices and the repositories that distribute

mobile apps (e.g., Google Play). These malware increasingly resemble their counterparts in

Desktop PC environments [4, 2], demonstrating the growing sophistication of mobile malware.

Consequently, a significant amount of effort has been expended on producing techniques to

detect Android malware.

Existing work on Android malware detection has focused on distinguishing between benign

and malicious apps. A number of these approaches utilize permissions requested or used

by an app to identify Android malware, including through the use of custom signatures

[105, 235, 231] or machine learning [218, 63]. Other techniques identify malicious apps by

ranking their riskiness [170, 121]. Alazab et al. and Adagio [54, 119] use graph structures to

identify malware. Other techniques identify malicious apps by comparing program behavior

with other aspects of an app, including the user interface [129] and app descriptions on

app markets [120]. These approaches have made significant and important steps toward

identifying malicious apps from individual devices and app markets.

Although accurately identifying if an app is benign or malicious is an important step towards

fighting the growing prevalence of malware on Android devices, simply declaring an app

as malicious and removing it is not enough to address the damage it may have done once

deployed [158]. Engineers that assess the impact of a malware app must determine if other

apps, files, or settings may have been damaged or altered; whether there are any remaining

malicious or problematic services or processes that have been compromised; if any sensitive

data has been stolen or leaked; if any unlawful or illegitimate financial charges have been made
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due to the malware’s presence; etc. To make such a determination, a security engineer can

significantly benefit from identifying the specific family to which an Android malware belongs.

The family of a malware app can be coarse-grained (e.g., Trojan, virus, worm, spyware, etc.)

or finer-grained, where more specific families (e.g., DroidKungFu [234], DroidDream [234],

Oldboot [12], etc.) are identified. Knowledge of the family to which an Android malware

belongs can help an engineer determine the specific steps that need to be taken to mitigate

or undo damage caused by the malware.

Complicating the detection and family identification of Android malware are transformations

that obfuscate apps in order to evade detection and family identification by anti-malware

software [8, 61, 179]. For example, a variety of malware uses reflection to obfuscate security-

sensitive behaviors [177]. A recent study of Android malware obfuscation has demonstrated

that simple transformations can prevent ten popular anti-malware products from detecting any

of the transformed malware samples, even though prior to the transformations those products

were able to detect those malware samples [179]. Thus, malware detection must be designed to

defeat these evasion techniques. To achieve this goal, malware detection techniques can utilize

program analyses that focus on the key semantics and behavior performed by a malware

(i.e., behavior as represented by control flow or data flow of a program), particularly in its

interactions with the system APIs and libraries that are external to the app, rather than just

on syntactic aspects of its implementation (e.g., identifier name or string constants). However,

the extent to which recent Android-malware detection techniques are resilient to modern

transformation attacks is not well-understood. Existing studies have largely applied their

techniques to malware that do not use any, or very limited, obfuscation [204, 225, 63, 119].

These techniques use features that are not resilient to obfuscations. For example, some

features utilized by existing approaches are based on control flow [204, 119], which are

susceptible to control-flow obfuscations (e.g., addition of junk code or call indirection). As

another example, features involving constant strings [225, 63] are susceptible to encryption

or renaming obfuscations.
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To further reduce Android malware propagation and damage, detection or family identification

of such malware should be scalable. Some state-of-the-art techniques run into scalability

issues and can take hours or up to an entire day to analyze even a single app [129, 67].

Cumulatively, this delayed analysis can allow Android apps to propagate undetected for a

longer period of time and, thus, cause more damage. Furthermore, it can prevent users from

scanning apps directly on their Android devices, which is important given that Android

markets have relatively poor vetting processes [235, 88]. Consequently, it is desirable to

utilize features that can be extracted efficiently for detection and family identification of

Android malware apps, even obfuscated ones.

In this chapter, we introduce RevealDroid, a lightweight machine learning-based approach for

detecting malicious Android apps and identifying their families. RevealDroid leverages a set

of features selected to achieve obfuscation resiliency, efficiency of analysis, and accuracy. It

does not require complex program analyses (e.g., data-flow analysis [67, 225]) or large sets

of features (e.g., hundreds of thousands of features [63, 119]), which can lead to scalability

problems. More specifically, our selected machine-learning features are based on Android-API

usage, including resolution of APIs invoked using reflection, and function calls (e.g., system

calls) made by native binaries within an Android app. No previous work has included

native-code feature extraction to detect malware. Including features based on reflection and

native code significantly aids RevealDroid with achieving obfuscation resiliency.

RevealDroid is capable of accurately detecting malicious apps with a 98% accuracy, and

identifying their families with a 95% accuracy, in under 90 seconds on average. RevealDroid

can maintain high accuracy even for obfuscated apps. We evaluate RevealDroid’s detection

and family identification accuracy by comparing its ability to correctly identify malware

and classify its family on a dataset of over 24,600 benign apps and over 30,000 malicious

apps from two different malware repositories. We further compare RevealDroid’s detection

and family-identification accuracy against state-of-the-research approaches: Adagio [119],
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Drebin [63], and MUDFLOW [67], both of which are approaches for malware detection; and

Dendroid [204], an approach for malware-family identification. RevealDroid has an overall

greater accuracy by about 11%-25% and mislabels 25%-54% fewer benign apps as malicious

than MUDFLOW; RevealDroid achieves up to 23% greater accuracy than Adagio and up to

60% greater accuracy than Drebin. Additionally, RevealDroid achieves a 24%-70% higher

classification rate than Dendroid.

This chapter makes the following contributions:

• RevealDroid demonstrates that highly lightweight analyses that extract API-based

features—including those based on reflection—and native code features combined with

machine learning, can achieve high accuracy, scalability, and obfuscation resiliency.

• We construct an updated dataset of over 27,900 malware apps labeled with their 447

malware families and assess RevealDroid’s family-identification accuracy on that dataset.

We make this updated dataset available for researchers and practitioners [7].

• To evaluate RevealDroid’s obfuscation resiliency, we apply several transformations to

malware apps in order to obfuscate them and assess our ability to detect and identify

families of those transformed apps. Using these transformed apps, we compare

RevealDroid’s accuracy for detection against Adagio, Drebin, and MUDFLOW, and for

family identification against Dendroid. We also make the transformed dataset available

online [7].

• We assess the efficiency of RevealDroid’s feature extraction and machine-learning

classification. We show that RevealDroid’s features can be more than 13 times faster

than information-flow feature extraction—which are features used in a variety of Android

malware detection tools [225, 67, 227]—while still exhibiting obfuscation resiliency and

accuracy. We further demonstrate that RevealDroid can produce classifiers efficiently,

as compared to other state-of-the-research tools.
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By utilizing machine-learning, RevealDroid is capable of detecting zero-day malware, as

opposed to just already-known malware. We assess the efficiency of our different types of

features through determining (1) the number of apps for which each feature can be extracted

in a short amount of time and (2) the actual runtime of a selection of apps. We further

illustrate RevealDroid’s ability to identify zero-day malware by utilizing it to detect several

families of such malware. Lastly, we leverage an expanded dataset of malware samples from

three malware repositories, discovered across several years, to demonstrate RevealDroid’s

efficacy.

The remainder of this chapter is structured as follows. Section A.2 introduces RevealDroid

and its design. Section A.3 covers our evaluation design, the research questions we study,

evaluation results, and RevealDroid’s limitations. The last sections cover work related to

RevealDroid (Section A.4), and conclude the chapter (Section A.5).

A.2 RevealDroid

Malware detection and family identification can be placed into two categories: signature-based

and machine learning-based [225]. For signature-based methods, security engineers must

produce (often, manually) specifications that match against key properties of a malware

family. For learning-based classification, techniques utilize machine learning to automatically

determine whether an app is benign or malicious. Each Android app is an instance represented

by features used to distinguish between apps supplied to learning algorithms (e.g., Android

API methods or permissions used). A dataset is a set of instances along with their features.

To classify Android apps as benign, malware, or a specific malware family, we leverage

supervised learning algorithms. For supervised learning, each instance is given a label; in the

case of malware detection, the labels chosen are often simply “benign” or “malicious”. The
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dataset is split into a training and testing set. A learning algorithm is applied to the training

set in order to produce a classifier, which can then label apps as “benign” or “malicious”.

The testing set is passed as input to the classifier to assess its accuracy.

Signature-based methods are highly reliable for detecting known malware, but are often

constructed manually and unreliable for detecting variants of known malware or zero-day

malware. Learning-based methods require a sizeable dataset and properly selected features to

ensure accuracy, but are more likely to generalize in their findings, making them particularly

well-suited for identifying variants of known malware or zero-day malware. In this chapter,

we utilize learning-based methods.

To properly leverage learning-based methods, we must select features that are likely to

distinguish both benign apps from malicious ones and different families of malware apps

(e.g., DroidDream from DroidKungFu). Android malware detection and family identification

can benefit significantly from the utilization of the Android platform itself to represent

features of apps. In particular, the Android API methods, the system calls, and other

low-level library calls invoked by an Android app vary significantly between malware families,

in order to perform different types of malicious behavior (e.g., sending SMS messages to

premium-rate numbers, stealing location and identifier information, acting as a bot, listening

for different activation triggers, etc.). We leverage this insight about distinguishing between

and identifying Android malware to design an approach for classifying Android malware

families. By focusing on framework-, system-, and library-level invocations, which in different

combinations tend to be malicious or benign, RevealDroid is capable of achieving obfuscation

resilience.

In the rest of this section, we discuss the features utilized by RevealDroid, the labeling of

apps and RevealDroid’s use of supervised learning to produce classifiers for detecting malware

and identifying their families, and other features we considered but ultimately excluded from

RevealDroid.
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A.2.1 Features Chosen for Learning

To construct RevealDroid, we explored a variety of statically extractable features, both those

previously used by other researchers and novel ones. Our goal when designing RevealDroid is

to select features that meet three criteria: accuracy since any malware detection or family

identification should be as correct as possible; efficiency, in order to quickly detect malware

and its malicious behaviors before it propagates widely; and obfuscation resiliency to address

different ways malware may evade detection. No malware detection or family identification

technique is obfuscation proof, i.e., capable of identifying malware or its family for all possible

evasion techniques. However, RevealDroid’s aim is to be resilient to as many obfuscation

techniques as possible.

To achieve accuracy, efficiency, and obfuscation resiliency, RevealDroid contains the following

four types of features: package-level Android API usage (PAPI), method-level Android API

usage (MAPI), reflection, and native code. We describe each of these features in more detail

in the following paragraphs.

Android API invocations or accesses have been used as features [63, 218]. MAPI features in

our formulation are the number of invocations of a specific Android API method. An example

of a MAPI feature value is simply the number of times TelephonyManager.getSimNumber()

is invoked. Categorization of API usage has been shown to be useful in previous malware

detection work [67]. To obtain categories of APIs, we simply used PAPI features since

packages are specified by Android framework developers themselves.

Increasingly, Android malware are relying on reflection, i.e., the ability of a program to

modify or inspect itself at runtime, in order to perform malicious behaviors or obfuscate such

behaviors [174]. At the same time, benign apps utilize such behaviors to perform legitimate

operations (e.g., update an app with the latest features or bug fixes without having to

re-install the entire app). Due to the increasing prevalence of reflection, we included it as

162



part of RevealDroid. Furthermore, given that obfuscating the target (e.g., method or field)

of a reflective call is an indicator of suspicious behavior, it is possible—as our evaluation

will demonstrate—to identify malicious reflective usage without needing to fully resolve all

reflective calls.

An Android app can use native code to improve the performance of the app, which is often

used for games, or to make use of shared native libraries. However, malware authors can

utilize native binaries to package exploits, hide behavior from anti-malware techniques that

do not scan native binaries, or perform other malicious functionalities [234]. Native code

is often ignored as part of Android malware analysis, especially if that analysis is static.

Consequently, we included it in RevealDroid.

A.2.2 Labeling and Classifier Selection

Through supervised learning, RevealDroid aims to utilize the aforementioned features to

determine which combinations of them indicate malicious behavior and the specific family

most likely to exhibit that behavior. As a result, RevealDroid can detect whether an app

is benign or malicious, or determine the family to which a malware belongs. RevealDroid

can produce different classifiers to perform these functions. The classifier constructed by

RevealDroid depends on the labels used when the classifier is trained.

To that end, RevealDroid can build multiple n-way classifiers, where n is the number of

labels for Android apps. To detect whether an app is malware, the training set of Android

apps can simply contain n = 2 labels: benign or malicious. For malware family identification,

the number of labels correspond to the number of malware families in the training set. For

example, Android Malware Genome contains 48 malware families, resulting in n = 48 for a

malware classifier trained on Malware Genome. Given that SVMs (Support Vector Machines)

are inherently two-way classifiers [60], we select a linear SVM for malware detection. For
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family identification, RevealDroid produces a CART (Classification and Regression Trees)

classifier [78], which is a type of decision tree classifier that handles multiclass classification

effectively [60]. We demonstrate the efficacy of our choice of classifiers in Section A.3.

The number of labels for family identification significantly increases the difficulty of correctly

labeling an Android app, as compared to the 2-way classification when distinguishing be-

tween benign and malicious apps. Nevertheless, as our evaluation results will demonstrate,

RevealDroid is capable of achieving high accuracy for identifying families of malicious apps.

A.2.3 Android API-Usage Extraction

The Android API contains security-sensitive functionality (e.g., sending SMS messages,

and accessing private repositories or location information). We leverage two means of

representing Android API usage: the number of Android API method invocations, representing

MAPI features, and the number of method invocations for specific Android API packages,

representing PAPI features. For example, in the case of PAPI, android.account provides

APIs for handling account information; android.media contains APIs for managing media

interfaces to audio and video. These features have been shown to be useful for distinguishing

malware families when manually specifying their signatures [112]. Consequently, we chose to

include such features for detecting and identifying families of Android malware using machine

learning.

To that end, we built the Android API-Usage Extractor, which determines the number

of API invocations per Android package and the number of invocations per Android API

method. As an example of the number of package-level invocations, if three methods of

classes in the android.telephony package are invoked, then the feature corresponding to that

package obtains a value of 3. Formally, the feature vector PAPI a = (p1, ..., pi, ..., p|P |), where
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pi = |{m •m ∈ methodPkgs(i)}|, P is the set of Android API packages, methodPkgs(i) are

the set of methods in package i, and m is an invocation of a method in an Android app a.

To illustrate how such features can help distinguish malware families, Table A.1 depicts

features from three Android malware families. Each feature is denoted by a package name

within the android.* top-level Android API package. For example, in Table A.1, jSMSHider

accesses sqlite APIs twice and the telephony package 8 times. The table shows that a

supervised learning algorithm can determine that Geinimi samples access location APIs

significantly more than jSMSHider or BaseBridge. The learning algorithm can also determine

that both jSMSHider and BaseBridge access the telephony and sqlite packages. However,

jSMSHider accesses telephony packages more than BaseBridge does; and BaseBridge accesses

sqlite packages more than telephony packages.

Table A.1: Example package API features from known Android malware families

telephony location sqlite Family

mal1 8 0 2 jSMSHider
mal2 0 12 0 Geinimi
mal3 2 0 7 BaseBridge

In the case of method-level invocations, if telephony.TeleMgr.listen is invoked by an

app twice, then that method obtains a value of 2. Formally, the feature vector MAPI a =

(m1, ...,mi, ...,m|M |), where mi = |{m}|, M is the set of Android API methods, m is an

invocation of a method µ ∈M . Table A.2 depicts the example in Table A.1 where packages

are expanded into methods.

Table A.2: Example method-level API features from known Android malware families

telephony.TeleMgr location.LocMgr location.LocMgr sqlite.Db

.listen .rmUpdates .reqLocUpdates .execSQL Family

mal1 8 0 0 2 jSMSHider
mal2 0 6 6 0 Geinimi
mal3 2 0 0 7 BaseBridge
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A.2.4 Reflective Feature Extraction

A type of feature often ignored by existing Android malware detection and classification

techniques are those that involve reflection and, as a result, dynamic class loading. Dynamic

class loading through reflection allows an app to modify or inspect itself during runtime, and

violate certain language constructs related to information hiding (e.g., allow access to the

private members of a class). At the same time, Android malware are increasingly utilizing

reflection to obfuscate their malicious behaviors [174]. To address this issue, RevealDroid

extracts statically attainable information about reflection. Specifically, RevealDroid deter-

mines if a method is reflectively invoked, and the extent to which reflective APIs are used.

RevealDroid further separates reflective invocations into three categories [150]:

• fully resolved: Both the reflectively invoked method and class names (e.g.,

TelephonyManager.getSimNumber()) can be statically determined;

• partially resolved: Only the invoked method name (e.g., getSimNumber()) can be

statically determined

• unresolved: Neither the method name nor the class name can be determined statically

(e.g., a non-constant string provided as input during runtime).

Partially extracted reflective invocations occur in cases where non-constant strings, or inputs,

are used as target methods of a reflective call. Additionally, as we have observed in Android

malware, a high number of unresolvable, reflective method invocations (e.g., reflective calls

whose target is encrypted) tend to be malicious. Although reflection enables useful abilities,

such as allowing an app to update itself so that users can have the latest features or bug

fixes, reflection when used in excess is a strong indicator of malicious behaviors.

Reflective invocation of a method, for both constructor and non-constructor methods, occurs

in three stages: (1) class procurement (i.e., a class with the method of interest is obtained)

(2) method procurement (i.e., the method of interest to be invoked is identified), and (3) the
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method of interest is actually invoked. Reflection Extractor attempts to identify information

at each stage for the three types of reflective invocations described above.

belowskipbelowskip belowskip1 ClassLoader cl = MyClass.getClassLoader ();

belowskipbelowskip belowskip2 try { Class c = cl.loadClass("MyActivity");

belowskipbelowskip belowskip3 ...

belowskipbelowskip belowskip4 Method m = c.getMethod("onPause" ,...);

belowskipbelowskip belowskip5 ...

belowskipbelowskip belowskip6 m.invoke (...); }

belowskipbelowskip belowskip7 catch { ... }

Figure A.1: Simple reflective method invocation example

A simple example, based on those found in real-world apps, of reflective method invocation,

not involving constructors, is depicted in Figure A.1. In this example, a ClassLoader for

MyClass is obtained (line 1), which is responsible for loading classes. The MyActivity class

is loaded using that ClassLoader (line 2). The onPause callback of MyActivity (line 4)—

which pauses a component that has been running—is retrieved and eventually invoked using

reflection (line 6). Apps that try to alter the standard Android lifecycle, by invoking callbacks,

are indicators of potentially malicious behaviors. Furthermore, any security-sensitive behavior

invoked using reflection is, at the least, suspicious.

Our analysis identifies reflectively invoked methods using a backwards analysis. That analysis

begins by identifying all reflective invocations (e.g., line 6 in Figure A.1). The analysis

currently does not consider the various different parameters or arguments that can be passed

to a method invoked reflectively. However, it does track the number of times a particular

method is reflectively invoked, which is used as a feature for supervised learning.

Next, the analysis follows the use-def chain of the invoked java.lang.reflect.Method

instance (e.g., m on line 6) to identify all possible definitions of the Method instance (e.g.,

line 4). Our analysis considers various methods that return Method instances, i.e., using

getMethod or getDeclaredMethod of java.lang.Class. The analysis then records each

identified method name. If the analysis cannot resolve the name, this information is also

recorded.

167



At that point, the analysis attempts to identify the class name that is being invoked. Similar to

the resolution of method names, the analysis follows the use-def chain of the java.lang.Class

instance from which a java.lang.Class is retrieved (e.g., following the use-def chain of c

on line 4). We model various means of obtaining a java.lang.Class instance. For example,

the class may be loaded by name using a ClassLoader’s loadClass(...) method (e.g.,

line 2), using java.lang.Class’s forName method, or through a class constant (e.g., using

MyClass.class). The analysis then records the class name it can find statically, or stores that

it could not resolve that name. Note that our analysis considers any subclass of ClassLoader,

including the Android-specific DexClassLoader that allows dynamic loading of classes stored

in the Android Dalvik Executable format. Our reflection analysis involving constructors

works in a similar manner by analyzing invocations of java.lang.reflect.Constructor

and invocations of its newInstance method.

Overall, for the three categories of reflective invocations described previously (full, par-

tial, or unresolved), the analysis obtains the following feature information for each app:

the full or partial method names invoked; the number of times the full or partial method

name is invoked; and the total numbers of fully, partially, or unresolved reflective invo-

cations. As an example, Table A.3 shows samples of features for a fully resolved method

name (SmsManager.sendTextMessage), a partially resolved one (getSimSerialNumber), and

unresolved method names.

Table A.3: Sample reflection features from real Android malware apps

SmsManager.sendTextMessage getSimSerialNumber UNRESOLV

mal1 6 0 0
mal2 0 4 0
mal3 0 0 6
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A.2.5 Native Call Extraction

A capability of Android apps that is almost never taken into account is use of native code. In

particular, to the best of our knowledge, no analysis that utilizes machine learning and static

analysis examines the internal behaviors of an app’s native binaries. This allows malware

authors to package malicious payloads in native binaries, since they are largely ignored. To

address this issue, RevealDroid includes a Native Call Extractor (NCE) that records calls

(e.g., system calls and calls to shared libraries) made by a native binary to entities outside of

it, and the extent to which these calls are invoked.

To extract information about security-sensitive invocations in native binaries, NCE must

disassemble binaries in a popular binary format for Unix-like systems called the Executable

and Linkable Format (ELF). A typical ELF binary, in Android, consists of headers describing

meta-data about the binary (e.g., address format, sections of the binary, memory layout

information, etc.). After the header, the binary file is divided into sections containing code,

data, and potentially other extra information.

To identify malicious behaviors, we focus on calls that the binary may make external to itself

and represent key semantics of security-sensitive behavior. In particular, the NCE extracts

system calls and other calls that the binary makes to external binaries (e.g., shared libraries).

While the main code segment of a native binary on Android is relatively easy to obfuscate

(e.g., storing data at non-standard addresses, or adding dead code), these external calls are

not easy to obfuscate, particularly system calls.

To identify external binary calls, NCE must identify any call within the code segment of a

native binary, and the appropriate assembly instructions that realize a function call. Within

an ELF binary in Android, this information is stored in the Procedure Linkage Table (PLT)

of the binary. Simply put, the PLT is used to determine the address of external functions not

known at linking time.
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1 00008b54 <sendmsg@plt >:

2 8b54: e28fc600 add ip, pc, #0, 12

3 8b58: e28cca02 add ip, ip, #8192

4 8b5c: e5bcf61c ldr pc, [ip, #1564]!

5 00008af4 <chmod@plt >:

6 8af4: e28fc600 add ip, pc, #0, 12

7 8af8: e28cca02 add ip, ip, #8192

8 8afc: e5bcf65c ldr pc, [ip, #1628]!

Figure A.2: PLT of a GingerBreak sample

1 99ec: e59d0010 ldr r0, [sp, #16]

2 99f0: e59f13c0 ldr r1, [pc, #960]

3 99f4: ebfffc3e bl 8af4 <chmod@plt >

Figure A.3: Code segment where chmod is invoked

As an example, consider the disassembled PLT section of a native binary containing the

GingerBreak root exploit, shown in Figure A.2 and reduced due to space limitations. In that

section, the location of two security-sensitive system calls are identified: sendmsg for sending

messages over sockets (starting at address 8b54), and chmod (starting at address 8af4) for

modifying the permissions of a file. Each sequence of instructions modifies the program

counter so that the machine begins executing at the address of the appropriate system call.

For example, lines 2-4 of Figure A.2 first computes an address at which the sendmsg code

resides, and then loads that address to the program counter (pc), so that the code will execute.

This binary is stored in the app’s assets/ directory, intended to contain raw resources of an

Android app, of the package containing the archive, and is named gbfm.png to make the file

appear to be simply an image. To identify binaries obfuscated in that manner, NCE scans

every file in the package containing the app, i.e., the APK, and checks the format of the file

to see if it matches that of an ELF binary.

To properly identify the binary as an Android ELF file, it must be analyzed using the appro-

priate matching Application Binary Interface (ABI), which is the analog of an Application

Programming Interface at the binary level. An ABI defines the manner in which an applica-

tion’s machine code interacts with the system or other binaries. Android supports a variety

of hardware architectures (e.g., ARM, MIPS, and x86) built against an Android-specific C
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library; each of these architectures use a different ABI. Disassembly and proper identification

of the particular ABIs requires use of the Android toolchain for that ABI. Incorrect selection

of an ABI or toolchain (e.g., using standard GNU ARM disassembly for Android ARM

binaries) will result in incorrectly disassembled code, which may appear to look correct.

Identification of system calls, or other external calls, actually invoked in a binary requires

analyzing the .text section of an Android ELF binary, which contains its executable code. In

such a binary, branching instructions realize invocations of external calls. Specifically, NCE

scans the .text section of every native binary within an Android app for branch, branch

with link, and branch with link and exchange instructions. For each instruction, our analysis

determines if the instruction references a label for a function in the binary’s PLT.

To illustrate, Figure A.3 depicts an invocation of the chmod system call. The initial two

instructions prepare the first (r0) and second (r1) arguments that are passed to chmod. The

final instruction invokes chmod using the address of the external call in the PLT (8af4 in

Figure A.2).

Overall, NCE records each external call of every binary in an Android app, and the number

of times each external call is invoked, which together serve as feature types for supervised

learning. By scanning every binary, our analysis ensures that no code is missed, even if

the code is not invoked using Android’s native code interface. For example, this behavior

is common for Android root exploits (e.g., executing the binary by using the Process or

Runtime Java classes). An example of three system call features from three different Android

malware apps is depicted in Table A.4.

Table A.4: Native call features from real Android malware apps

chmod rename unlink

mal1 6 9 13
mal2 4 6 0
mal3 3 0 6
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A.2.6 Other Features Considered

To construct RevealDroid, we explored a variety of statically extractable features, both those

previously used by other researchers and novel ones. Table A.5 depicts the various features

we considered in comparison with our three criteria of interest (accuracy, efficiency, and

obfuscation resiliency) but did not include since they did not meet one or more of those

criteria. The various features include the following : Permissions, Component names, and

Intent Filters (IFilters) attainable from an Android app manifest; security-sensitive data

Flows ; and Intent actions (IActions). Xindicates the feature meets the criterion in question;

8 indicates that it does not. Next, we discuss each feature, and our reasons for discarding it.

1. Android manifest properties. An Android application archive (APK), i.e., a compressed

archive containing an installable Android app, is distributed with an XML manifest

file that contains a variety of metadata about an app. Extracting information from a

manifest file can be highly efficient, since it requires simply parsing an XML file. Among

the information available in an app’s manifest file, we considered using the following as

features. However, we discard them due to either not contributing significantly to accuracy

or for not being obfuscation resilient, as demonstrated in previous studies [181].

• Permissions. Before Android 6.0, Android apps needed to request permissions at

installation time. Starting with Android 6.0, users can revoke or grant permissions at

app runtime. However, app permissions are highly granular. Although an app may

Table A.5: Considered features and desired approach criteria: Xindicates the feature meets
the criterion; 8 indicates that it does not

Perm Comp IFilters Flows IActions

Acc 8 8 8 X X

Eff X X X 8 X

Obf X 8 8 8 8
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even request more permissions than it actually uses, it may simply be requesting

extra permissions in anticipation of its use in future versions.

• App components. A variety of component types, with specific functionalities (e.g.,

components for providing GUIs, and others for running background services) are

declared within an Android app’s manifest. However, presence of particular compo-

nents, especially simply tracking their name, as conducted by some approaches [181],

can be obfuscated easily through renaming.

• Intent filters. An app’s manifest often declares messages, called Intents, it can receive

and process through filters indicating Intent properties of interest. Although this

information can be useful for identifying malware (e.g., those that listen for Intents

indicating system actions), an app may simply declare filters in code, allowing for

another form of obfuscation.

2. Security-sensitive data flows. A few approaches for Android malware detection [225, 67]

use data flows between security-sensitive Android interfaces to determine if an app is

malicious. Tracking this form of information is particularly useful for identifying privacy

leaks, but can be computationally expensive to compute [67]. For that reason, we exclude

this feature from RevealDroid. Section A.3.6 further examines efficiency issues with such

flows. Furthermore, our experimentation demonstrated that call indirection actually affects

data-flow analyses which, in turn, obfuscates privacy leaks, particularly in the case of

family identification [117].

3. Intent actions. Android malware are known to rely upon tracking the actions of an Intent

(e.g., whether a package is installed, or if a device has recently completed booting) to

determine when to perform a malicious behavior [234, 112]. In fact, these features are

particularly useful for distinguishing between different malware families. Unfortunately,

these features are relatively easy to obfuscate, due to the fact that Intent actions are

stored as strings, which can be encrypted. In fact, we found that such features can cause a
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classifier to miss up to 27% of malware obfuscated using custom encryption transformations

[116]. Thus, we exclude such a feature in RevealDroid.

A.3 Evaluation Design and Results

To evaluate RevealDroid, we study its accuracy, efficiency, and resiliency to transformations

intended to obfuscate malware. Furthermore, we compare RevealDroid to another state-

of-the-research Android malware-family identification approach, Dendroid, and three other

detection approaches, MUDFLOW, Drebin, and Adagio. Specifically, we answer the following

research questions:

• RQ1: How accurate is RevealDroid for distinguishing between benign and malicious

Android apps in a time-agnostic and time-aware scenarios?

• RQ2: How accurate is RevealDroid for identifying the specific family of a malicious

Android app?

• RQ3: How does RevealDroid’s detection accuracy compare to other detection ap-

proaches?

• RQ4: How does RevealDroid’s family identification capability compare to another

state-of-the-research malware-family identification approach?

• RQ5: Which features were selected and account for the detection or family identification

capabilities of RevealDroid?

• RQ6: What is RevealDroid’s run-time efficiency? How does this run-time efficiency

compare to other learning-based approaches for malware detection?

We implemented RevealDroid in Java and Python. To construct the Android API-Usage Ex-

tractor and Reflection Feature Extractor, we leveraged Soot [209], a static analysis framework,

and Dexpler [73], a translator from Android Dalvik Bytecode to Soot’s intermediate repre-
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sentation. For Native Call Extractor, we utilized the Android ABI toolchain to disassemble

binaries and identify Android ELF binaries, and constructed a custom-built extractor using

Python. For machine learning, we selected Scikit-learn [169], a widely used machine-learning

toolkit for Python. For our experiments, we used a machine with 64 cores and 256GB RAM.

To assess RevealDroid’s accuracy, we constructed a dataset of both benign and malicious

Android apps. To obtain benign apps, we utilized AndroZoo [58], which is a repository

of more than 5.5 million apps collected from several sources, including Google Play, the

official Android market—and scanned by commercial anti-malware products from VirusTotal

[13], an online service provided by Google that scans URLs, files, and Android apps to

determine if they are malicious or benign. After scanning the AndroZoo dataset, we found

over 24,600 Google Play apps, out of nearly 2 million apps, that are marked as benign by all

55 anti-malware products.

We obtained malware samples from four Android malware repositories: the Android Malware

Genome project [234], the Drebin dataset [11], VirusShare [18], and VirusTotal [13]. Malware

Genome contains over 1,200 Android malware apps from 48 different malware families. We

utilized 22,592 Android malware samples from VirusShare. We further leveraged 5,538

samples from the Drebin dataset, which includes the samples from the Android Malware

Genome project. The remaining apps were obtained from VirusTotal.

A.3.1 RQ1: Detection Accuracy

To answer RQ1, we assess how accurate RevealDroid is for detecting whether an app is benign

or malicious in both time-agnostic and time-aware scenarios. In a time-agnostic scenario,

training and testing as part of machine learning is conducted without considering the age of

apps in the dataset. This scenario has been utilized to evaluate an overwhelming majority of

machine learning-based Android malware-detection approaches [56]. A time-aware scenario
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uses the modification date of apps to determine training and testing sets, which avoids

training on apps from the future to test on apps from the past.

To evaluate RevealDroid in a time-agnostic scenario, we utilized our entire dataset of Android

apps. Table A.6 depicts results for a 10-fold cross-validation, which includes the following:

Precision indicates the extent to which the classifier produces false positives; Recall shows

the extent to which the classifier produces false negatives; F1 score is the weighted harmonic

mean of precision and recall; the No. of Apps used; averages (Avg.) for precision, recall, and

the F1 score; and the Total number of apps.

Table A.6: Detection results for time-agnostic scenario

Precision Recall F1 No. Apps

Benign 98% 97% 98% 24,679
Malicious 98% 98% 98% 30,203

Avg./Total 98% 98% 98% 54,882

The table illustrates that RevealDroid achieves high accuracy across the board, for both benign

and malicious apps, with an average F1 score of 98%. For just benign apps, RevealDroid

obtains a 98% F1 score. For malicious apps alone, RevealDroid attains a 98% F1 score.

These consistently high results across multiple measures demonstrates RevealDroid’s ability

to detect malicious apps with high accuracy.

Figure A.4 shows the detection results for the time-agnostic scenario as part of a precision-

recall (PR) curve. This PR curve is nearly perfect, as shown by being close to the upper

right corner and having on overall area under the curve (AUC) of .98, where the ideal is 1.00.

To evaluate RevealDroid in a time-aware scenario, we followed the methodology described by

Allix et al. [56]. Specifically, we extracted the modification date of the classes.dex file in

each app’s APK file. classes.dex contains the compiled implementation classes of the app.

The date at which the file is modified allows us to determine the age of the app, which is

used to split our datasets into training and testing.
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Figure A.4: Precision-recall curve for detection in the time-agnostic scenario
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We split our apps into training and testing for a particular date as follows: For each date, any

apps older than that date are assigned to the training set; the remaining apps are assigned to

the testing set. We selected dates as the first day of each year from 2012-2015. For example,

we selected apps created prior to 1/1/2012 as training, the remaining apps are for testing.

Figure A.5 depicts the results obtained for each year with selected dates for splitting from

2012 to 2015. For the first day of 2012, RevealDroid obtains an 87% F1 score and similar

results for 2013. However, RevealDroid results only improve for the following years to 96% for

2014 and 99% for 2015. These results show that RevealDroid is able to obtain high accuracy,

even when the age of apps is taken into account.

These results are particularly notable since previous work has demonstrated that machine

learning-based Android malware detection was unable to obtain an F1 score higher than

70% in a time-aware scenario [56]. In that work, dates newer in time resulted in lower F1

scores; however, RevealDroid actually improves to as high as 99%. Consequently, RevealDroid
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Figure A.5: Detection results for time-aware scenario
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exhibits a strong ability to obtain high detection results in both time-aware and time-agnostic

scenarios.

A.3.2 RQ2: Family Identification

Identifying an Android app as malware is insufficient for dealing with the damage it may

cause. Once a malicious app is deployed, it may install other apps, steal information, modify

settings, etc. Thus, determining the family to which an app belongs can aid engineers and

end users with determining how to deal with the malicious app, besides simply removing it.

Android Malware Genome. To determine RevealDroid’s ability to classify Android

malware apps into families, we assessed RQ2 by utilizing the Android Malware Genome

(AMG) [234], which contains over 1,200 apps and 48 malware families, labeled by other

researchers.

Figure A.6 depicts a histogram of malware families in AMG. Notice that no family constitutes

more than 25% of the apps in the dataset. Consequently, a naive classifier that labels all
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samples with the most frequently appearing label would only obtain an accuracy of 25%. The

histogram indicates that this particular classification task requires a sophisticated classifier.

We used RevealDroid to construct a classifier with 48 different labels, one for each family in

AMG. For this experiment, we conducted a 10-fold cross-validation to assess the accuracy of

our classifier.

On the AMG dataset, RevealDroid’s malware-family classifier obtains a 95% correct clas-

sification rate, far above the 25% correct classification rate for a naive classifier. These

results showcase RevealDroid’s ability to identify a malicious app’s family with high accuracy.

This outcome indicates that our features are well-chosen for discriminating between malware

families.

RevealDroid’s classifier did not reach perfect correctness due to a lack of samples for certain

malware families: Malware families with less than 10 samples obtained lower results, since

our cross-validation uses 10 folds. Ideally, when performing a cross-validation by selecting

folds, the number of labels should be greater than or equal to the number of folds.

Expanded Families. To assess RevealDroid’s classifiers’ effectiveness on more recent

malware families, we evaluated those classifiers on a much larger set of malware samples from

Drebin, VirusShare, and VirusTotal. To produce a ground truth of families for malicious

apps beyond those found in AMG, we again leveraged VirusTotal and a tool called AVClass

[194], which provides an algorithm for identifying the malware family label of a malicious app

using VirusTotal labels. We uploaded every sample in our malicious dataset to VirusTotal

to obtain labels from all the anti-malware products on it. These labels are then passed to

AVClass which then provides a family label for each malicious app. If AVClass could identify

a family for the malicious app, we utilized it for this experiment. This process resulted in a

dataset of 447 families and 27,979 malware samples.

180



Figure A.7 shows the histogram of the 37 families among the 447 families that contain 100 or

more samples. A random classifier would obtain only about a 0.22% correct classification

rate; and a naive classifier that simply marks every app with the most frequent family label

(jifake) would only obtain a 26% classification rate. As with the AMG dataset, this expanded

family dataset poses a challenging classification problem, requiring a sophisticated classifier.

RevealDroid’s family identification for this set of apps achieves an 84% correct classification

rate, which is far above the 26% classification rate for a naive classifier. This result is

particularly useful given the choice of 447 families to which an individual malicious sample

may belong.

Note that a major contributing factor to the accuracy of RevealDroid from this expanded

family-identification experiment is the use of AVClass and VirusTotal labels. These labels

are obtained by an automated technique that relies on (1) heuristics and (2) labels from

anti-malware products in VirusTotal, which often disagree with each other. As a result, those

labels are likely less accurate than the manually curated AMG labels. That lower quality of

family labels for AVClass is likely affecting the correct classification rate of RevealDroid for

the expanded family dataset.

A.3.3 RQ3: Detection Comparison

To assess RevealDroid against state-of-the-research approaches for Android malware detection,

we compared it against three research prototypes: MUDFLOW, Adagio [119], and Drebin

[63]. Besides MUDFLOW, we attempted to obtain state-of-the-research tools, DroidSIFT and

Drebin [63], by contacting their respective authors. Drebin is another machine learning-based

Android malware detection approach. Unfortunately, both tools are unavailable, preventing us

from comparing against them directly. However, in the place of Drebin, its authors suggested

we use their other tool, Adagio, which achieves similar accuracy and efficiency results, and
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also utilizes machine learning. Adagio operates by constructing function call graphs and

encoding them as features used for machine learning.

Although the original Drebin implementation is unavailable, we decided to assess the extent

to which Drebin’s features for machine learning are useful for detection of Android malware.

In particular, we selected three key features that are unique to Drebin: network addresses,

requested permissions, and used permissions. Network addresses include URLs, IP addresses,

and valid hostnames. Requested permissions are permissions an app requests at install time;

used permissions are permissions that an app actually utilizes in its code, as determined by

static analysis.

For MUDFLOW, we downloaded its implementation and consulted with its authors to verify

that we are using their implementation correctly by re-running MUDFLOW to replicate their

results on their original dataset. We further computed method-level flows from FlowDroid

and verified that we can replicate the high accuracy results from MUDFLOW’s original study

on a subset of apps from their dataset. We performed a similar verification in the case of

Adagio and Drebin. Due to space limitations, we omit a comparison we conducted with 60

commercial anti-virus products. However, RevealDroid met or exceeded the detection rates

of those products. The results of that comparison are available online [7].

We compared Adagio, MUDFLOW, Drebin, and RevealDroid in the following two scenarios:

one involving only the original untransformed apps, and another involving apps transformed

using DroidChameleon [179, 181], a tool that transforms apps in order to obfuscate them. In

the scenario with no transformed apps, we split a dataset consisting of 7,989 malicious apps

and 1,742 benign apps into a training set that has half of the benign apps and half of the

malicious apps; the testing set has the remaining apps. For the other scenario, the training

set consists of 7,995 malicious apps and 878 benign apps; the testing set contains (1) 1,188

malicious AMG apps to which DroidChameleon transformations are applied, and (2) 869
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benign apps. For classifier selection, we used the most accurate classifiers of MUDFLOW,

Adagio, and Drebin.

DroidChameleon transformations are designed to prevent anti-malware tools from detecting

apps to which those transformations are applied. These transformations are based on

obfuscations seen in the wild, and have previously been shown to prevent 10 commercial

antivirus products from detecting the resulting transformed apps [181]. Another alternative

obfuscation tool for Android we considered is ADAM [230]. However, DroidChameleon

provides a wider variety of obfuscations, has composite transformations, and has demonstrated

the ability to completely evade anti-malware detection. We selected apps from the original

AMG to assess RevealDroid’s, MUDFLOW’s, Drebin’s, and Adagio’s obfuscation resiliency.

Using AMG allows us to assess both the malware detection and family identification abilities

of RevealDroid for obfuscation resiliency.

Table A.7 depicts the sets of transformations we applied: call indirection, where a method

invocation is moved into a new method which, in turn, is invoked in place of the original

method; renaming of classes, where the identifier of classes is changed, which may prevent

detection or family identification that searches for specific class names; and encrypting arrays

and strings if they are used by an app. We selected these transformations because they

have been shown to evade anti-virus products [181], can be combined to produce stronger

obfuscations, and actually result in apps that are still usable. We manually tested several

malicious apps, after applying transformations, to verify that the obfuscations resulted in

runnable, usable apps.

For each malicious app in AMG, we attempted to apply transformation sets in the following

order (ts0, ts1, ts2, ts3), where we try each transformation set in that sequence until a set

results in an installable app. For example, we first attempt to apply ts0 and if that fails we

then try ts1. We continue in that manner until we have tried all four transformation sets.
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Table A.7: Sets of transformations attempted or applied

Trans. Set Call Indirection Rename Classes Encrypt Arrays Encrypt Strings

ts0 X X X X
ts1 X X X
ts2 X X
ts3 X

Table A.8 showcases the Precision, Recall, and F1 score results for each approach and both

scenarios, i.e., without transformations (¬ T ) and with transformations (T ). For each of

those metrics, the table depicts results for Benign apps and Mal icious ones.

Table A.8: Detection comparison, where each numeric result is expressed as a percentage1

MUDFLOW RevealDroid Adagio Drebin

¬ T T ¬ T T ¬ T T ¬ T T

Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1 Pr Re F1
Ben 85 34 49 98 47 64 90 88 89 91 72 80 90 76 83 54 73 62 97 100 98 42 100 59
Mal 87 99 93 72 99 84 97 98 98 82 95 88 95 98 96 73 54 62 100 99 100 0 0 0

AVG 86 66 71 85 73 74 96 96 96 86 85 85 92 87 90 63 63 62 99 99 99 18 42 25

Overall, RevealDroid’s classifier outperforms MUDFLOW’s two-way classifier. With no

tranformation, RevealDroid obtains an average F1 score of 96% compared to MUDFLOW’s

71%. For the obfuscations scenario, RevealDroid obtains an average F1 score of 85% compared

to MUDFLOW’s 74%. The reason MUDFLOW’s results improve or remain unchanged overall

is likely due to the fact that transformations applied by DroidChameleon are based on

transformations seen in the wild. Thus, the approach is likely learning about combinations of

feature values that indicate obfuscations.

The most striking difference between MUDFLOW’s and RevealDroid’s results for both scenar-

ios is each classifier’s recall for benign apps. In the scenario with obfuscations, RevealDroid

achieves a 72% recall for benign apps compared to MUDFLOW’s 47%. For benign apps in

the other scenario, RevealDroid obtains a 88% recall compared to MUDFLOW’s 34% recall.

1Note that RevealDroid’s accuracy changes from Section A.3.1 due to differing dataset sizes and splitting
strategies.
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These results indicate that MUDFLOW’s classifier has a strong tendency to mark benign

apps as malicious, unlike RevealDroid’s classifier.

Adagio obtains a 6% lower F1 score than RevealDroid in the scenario with no DroidChameleon

obfuscations. Furthermore, with the DroidChameleon obfuscations, RevealDroid significantly

outperforms Adagio by 23%. This low obfuscation resiliency for Adagio is particularly due

to the use of call-indirection transformations, which changes the expected call graph that

Adagio utilizes to identify malware.

Drebin obtains a 3% higher F1 score than RevealDroid in the scenario with no DroidChameleon

transformations. However, in the scenario with transformations, Drebin exhibits the least

obfuscation resiliency compared to the other approaches, obtaining a 60% lower F1 score than

RevealDroid. The drastic change in accuracy is due to Drebin’s heavy reliance on network

addresses, which account for most of the features utilized by Drebin. Network addresses are

constant strings which are susceptible to identifier renaming and encryption transformations,

utilized by DroidChameleon.

In summary, RevealDroid obtains obfuscation resiliency and accuracy for detection, as

compared to three state-of-the-research malware detection approaches.

A.3.4 RQ4: Family-Identification Comparison

To demonstrate the improvement in accuracy of RevealDroid’s family identification over

the state-of-the-art, we compare RevealDroid against a state-of-the-art Android-malware

family-identification approach, Dendroid [204], which also utilizes machine learning to classify

malware. Dendroid uses features that represent each method of an app as a sequence of typed

statements. We contacted the authors of another approach, DroidSIFT [225], which also

identifies families. However, DroidSIFT’s authors are unable to share their implementation.
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Consequently, we could not compare against it. Note that neither MUDFLOW, Adagio, nor

Drebin perform family identification.

We closely consulted with the authors of Dendroid to ensure we obtain the most accurate

results using their tool as possible. To that end, we replicated their evaluation and verified

the accuracy of our results with Dendroid’s authors. To compare Dendroid and RevealDroid,

we assessed both approaches using AMG. Specifically, we split AMG apps into a training and

testing set of approximately equal size. Given that 15 families in AMG only have a single

sample, we selected families which had at least two samples, resulting in 33 families in total.

For each family, half of the samples were placed into the test set and half into the training set.

For families with odd-numbered samples, the remaining sample was added to the training set.

This splitting strategy resulted in a training set of 626 apps and a testing set of 607 apps.

Using that experimental setup, Dendroid correctly classified 73% of the test apps, while

RevealDroid achieves a 97% correct classification rate. Although our replicated results for

Dendroid are significantly lower than the Dendroid authors’ original results [204], we verified

our results with those authors and discovered an error in their experiment.

We further compared RevealDroid’s and Dendroid’s obfuscation resiliency. To that end, we

trained both Dendroid and RevealDroid using the training set consisting of half of AMG. We

then replaced apps in the test set with their obfuscated versions—transformed as discussed

in Section A.3.3. The resulting test set contains 590 apps.

RevealDroid demonstrated overwhelmingly greater obfuscation resiliency than Dendroid:

RevealDroid obtains a 97% correct classification rate, while Dendroid’s classification rate

falls to 27%. This low result for Dendroid is unsurprising since it relies on the structure of a

method as features. Given that the call indirection transformation that we applied to the

test apps alters that structure, the transformation prevents proper classification by Dendroid.
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A.3.5 RQ5: Feature Selection

To obtain a better understanding of the extent to which RevealDroid’s manually chosen

features (i.e., method-level, package-level, reflection-based, and native code-based features)

affect its classifiers, we used automated feature selection to identify the features that affect

RevealDroid’s results most. Additionally, feature selection allows for faster creation of

classifiers, reduced training and testing time, and reduces the possibility of overfitting

[122, 220]. Specifically, we focused on the dataset of 54,882 apps used for RQ1, where

each malicious app is labeled using its family name and every benign app is labeled as

such. We obtain family labels using the methodology described in Section A.3.2. By

performing automated feature selection using such labeling, we are better able to understand

RevealDroid’s ability to identify malware families, rather than just its ability to distinguish

benign apps from malicious ones. Our initial dataset contains over a million features.

Consequently, to perform feature selection, we used a stochastic gradient descent (SGD)

classifier, which is a classifier based on an optimization method for unconstrained optimization

problems [226, 28] that supports incremental learning [85]. Incremental learning allows a

machine learning algorithm to build a classifier incrementally in order to avoid storing all

data in memory; given the number of features and apps we utilize, storing all of them in

memory is intractable.

Through the feature-selection process described above, a total of 1,054 features were chosen.

The resulting features included 595 method-level and package-level features, 454 native call

features, and 5 reflection features. The five reflection features selected were features that

aggregate information about specific Android APIs that are reflectively invoked. These

features are the number of partially resolved API invocations; the number of fully resolved

API invocations; the number of reflective API invocations, where the invoked class cannot be

statically determined; the number of unresolvable reflective API invocations; and the total

number of reflective invocations in the app.
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For method-level and package-level features, the selection process chose a variety of security-

sensitive API (SAPI) methods and UI-oriented API methods. The use of both security-

sensitive and UI-oriented methods to distinguish between benign and malicious apps makes

sense since having both types of information allows a classifier to identify the context necessary

to decide whether an app’s usage is malicious. For example, this intuition has been used

by techniques that do not leverage machine learning to identify malicious apps or behavior,

but instead identify mismatches among an app’s UI and program behaviors [129, 88]. SAPI

methods selected include those related to the sending and receiving of Intents, notifications,

and other types of inter-process communication; access and manipulation of security-sensitive

data stores, such as a Content Provider (i.e., a type of Android component that stores app-

specific data) or SQLite database; preferences and settings of the app or the entire Android

system; location information of the device (e.g., GPS coordinates); telephone functionality,

including sending SMS messages and listening for changes of telephony state; and low-level

Android operating system functionality (e.g., asynchronous task running, threading, power

management, process killing, and process priority modification).

An assortment of UI-oriented API method types were selected, including the following:

methods for operating on different types of standard Android widgets (e.g., images, pop-up

windows, dialog windows, progress bars, etc.); web-based UI widgets (e.g., methods of the

Android WebView class); methods of the Android component type representing a single UI

screen (i.e., the Android Activity class) and its sub-components (i.e., Android Fragments);

and Android graphics rendering and animation methods.

The native code features extracted include a variety of functions associated with exploits

and security-sensitive functionality—and features associated with benign functionality. In

terms of exploits or security-sensitive functionality, the following types of functions are

selected: encryption and decryption functions (e.g. RSA functions); compression and

decompression functions (e.g., for BZ2 compression); stack unwinding (e.g., used in return-
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oriented programming attacks); file and memory manipulation; concurrency control (e.g.,

threading and mutual-exclusion mechanisms); external application frameworks (e.g., the

Mono platform implementation of Microsoft’s .NET Framework); and exception handling

and manipulation, which is critical for writing exploit code [141].

In terms of benign functionality, selected native code functions include graphics rendering

libraries (e.g., OpenGL libraries) and image manipluation (e.g., JPEG and PNG manipulation).

In such cases, native code is sensible to use due to improved performance from executing

code compiled for a specific hardware architecture.

A.3.6 RQ6: Run-Time Efficiency

The number of both benign and malicious Android apps is growing very quickly [21] making

it increasingly important that Android malware analysis scales so that such malware does not

remain undetected long enough to do major damage, or even any damage. A slow analysis of

Android apps can allow malware to propagate undetected longer. Furthermore, an efficient

analysis of malware apps is particularly beneficial for Android end users, since they can

protect themselves further by using RevealDroid’s classifiers and extractors on their Android

devices.

To assess RevealDroid’s efficiency, we measured run-times for both (1) feature extraction and

(2) classifier training and testing. Note that once a classifier is trained, classifying an app

using it—whether for malware detection or family identification—is practically instantaneous.

Consequently, feature extraction and classifier training are the key bottlenecks for machine

learning-based malware detection and family identification.

General Feature-Extraction. To determine RevealDroid’s general run-time efficiency

for extracting features, we selected 100 apps in the following manner. We first created a
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histogram of app sizes with five bins, as depicted in Figure A.8. From each bin, we randomly

sampled 20 apps, resulting in 100 apps in total to be used to measure RevealDroid’s feature

extraction run-time efficiency. We then ran our three types of feature extractors on each

app. Recall that both package-level and method-level feature extraction occur concurrently.

Such an experiment allows us to assess the general run-time efficiency of each type of feature

ensuring that we have sampled from apps with a variety of sizes.

Figure A.8: Histogram of app sizes from our dataset

0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000
App Sizes in Bytes

102

103

104

Fr
eq

ue
nc

y 
on

 L
og

 S
ca

le

47,662

4,156

1,415

255

107

Table A.9 shows the results of our feature-extraction efficiency analysis. Each feature takes

under 90 seconds on average to compute. Furthermore, RevealDroid is designed to extract

features in parallel, making the total feature extraction, on average, also under 90 seconds.

This runtime is reasonable for practical malware detection and family identification that is

obfuscation-resilient and accurate.

Table A.9: Average feature-extraction times for each type of RevealDroid feature in seconds.

Native Reflection PAPI/MAPI

Average (s) 45.79 89.89 79.48
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Feature Extraction and Classification. Another bottleneck for learning-based malware

detection and family identification is the time it takes for a supervised-learning algorithm

to train a classifier and, subsequently, test it. In a practical setting, classifiers need to be

regularly updated and re-trained in order to maximize the possibility that such a classifier

detects new Android malware.

Table A.10: Feature extraction and classification run-times in hours

RD-CART RD-LSVM Adagio MUDFLOW Drebin

Feature Extraction 84.79 84.79 56.12 1101.28 817.67
Classification – – 21.59 0.20 –

Total 84.79 84.79 77.70 1101.48 817.67

Table A.10 depicts execution times, in hours, for both feature extraction and classification

on 9,731 apps. The – indicates that classification takes under 2 seconds to run. For this

experiment, we compared RevealDroid’s CART (RD-CART ) and linear SVM (RD-LSVM )

classifiers with Adagio’s, Drebin’s, and MUDFLOW’s classifiers. Each approach was run on our

experiment machine, using the same hardware configuration. MUDFLOW took approximately

46 days to execute; Drebin took approximately 34 days to execute; RevealDroid’s CART and

SVM classifiers each take 3.5 days to execute; and Adagio’s classifier requires about 3 days

to execute. Given RevealDroid’s superior obfuscation resiliency and its family identification

capability, along with its high accuracy and efficiency, RevealDroid achieves its three main

non-functional goals.

A.3.7 Discussion and Limitations

One of the major goals of RevealDroid is to aid in the selection of features that are obfuscation-

resilient, highly accurate, and highly efficient. Our results demonstrate that these three

qualities are achieved, in tandem, using RevealDroid.
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Limitations of the dataset utilized by RevealDroid represents a threat to external validity.

The number of apps in our dataset affect the generalizability of our results. To maximize our

study’s generalizability, we used a relatively large dataset, consisting over 50,000 apps, to

assess RevealDroid. These apps range from 2011 to 2016.

Internal validity issues mainly arise due to the labeling of apps as benign, malicious, and

belonging to a particular malware family. To mitigate this labeling threat, we carefully

selected apps to maximize the probability that they are correctly marked as benign or

malicious (see the preamble of Section A.3). We further utilized family labels already verified

by security experts (see Section A.3.2). Moreover, machine-learning algorithms themselves

are partially self-corrective, through statistical methods, for errors in the datasets.

Our choice of using DroidChameleon transformations to evaluate obfuscation resiliency

of RevealDroid, and other approaches, is a threat to construct validity. In particular,

DroidChameleon may not apply the most effective, realistic obfuscations to malware. This

threat is alleviated by DroidChameleon’s demonstrated ability to evade existing anti-virus

products; its wide variety of transformations, including those inspired by obfuscations observed

in the wild; and its composite transformations. Moreover, some apps in our dataset use

obfuscations, further mitigating this threat.

We further conducted a study where we trained on our entire app dataset and tested on

1,109 apps transformed with reflection transformations using Droid Chameleon. RevealDroid

successfully detected all these apps as malicious. In future work, we intend to include

reflection transformations as part of comparing RevealDroid with other malware detection

approaches.

Although RevealDroid does extract reflection-related features, static analysis is limited in

terms of its ability to extract information related to reflection. To reduce the affect of this
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limitation, we directly account for the partiality of our reflection features by representing the

degree to which a reflective call can be resolved by our analysis.

One possible way to obfuscate native calls is to utilize the dynamic linker along with the

associated dlopen and dlsym functions to load dynamically-linked functions. To obfuscate

this behavior, a malware author can encrypt names in a native binary and decrypt the names

during runtime. To handle this case, which has not been observed in Android malware so

far, we can create features similar to those that RevealDroid uses for reflection: RevealDroid

can determine the extent to which an invoked native call is encrypted. Given that including

this type of feature worked well for reflection-based obfuscation (see Section A.3.5), these

features should aid in detecting malicious native-code obfuscations that leverage the dynamic

linker. To further aid in detecting these types of malicious behaviors, RevealDroid can also

include dlopen and dlsym as native-call features directly.

For family identification, we primarily chose a CART classifier due to the improved per-

formance gain compared with an SVM, with no loss of accuracy. Specifically, we obtained

approximately the same F1 score for an SVM and CART classifier, i.e., about 95% for the

AMG dataset. However, while the SVM classifier takes 3,539 seconds to run, which is nearly

an hour, the CART classifier only takes 194 seconds—which is 18 times faster. For that

experiment, we selected an SVM with a linear kernel, a penalty parameter C = 1.0, square of

the hinge loss as the loss function, and 1,000 as the maximum number of iterations.

One interesting aspect of our experiments, particularly compared to others, is the manner

in which we sample benign apps and malicious apps to conduct machine learning. Some

approaches choose imbalanced datasets [63]. Other approaches use significantly more malicious

apps than benign apps [67]. At least one study has examined a balanced dataset and an

imbalanced dataset where the majority class represents benign apps [183].
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For our malware-detection experiment (Section A.3.1), we chose to balance the samples.

There are two key reasons for choosing a balanced dataset. First, different Android markets

have varying levels of malicious apps compared to benign apps [88]. For example, certain

Android markets have been known to have a ratio around 60% benign to 40% malicious apps

[88]. Second, previous experiments have often chosen imbalanced datasets, which are not

necessarily representative of Android markets in general, and may result in less accurate

classifiers [133]. Consequently, given the varying degrees of ratios of benign apps to malicious

apps on different Android markets, and to avoid biasing the classifier toward either malicious

or benign apps, we chose to balance our dataset.

A.4 Related Work

We provide an overview of the current state of Android malware detection and family

identification. We first discuss the techniques that solely aim to detect malicious Android

apps. We then cover signature-based and machine learning-based techniques that aim to

identify the family of such apps.

Many non-machine learning-based Android malware detection approaches have been created.

Some approaches mainly use Android-app permissions [105, 235]. Others focus on a variety of

other risk factors to rank apps according to their suspiciousness [121, 170, 87]. A significant

number of approaches focus on data leakage using taint analyses including dynamic taint

analysis [103], combined static and dynamic analysis [219], taint analysis that focuses on

user intention or user actions in association with data leaks [223, 138], or analysis of leaks

that occur through inter-component communication [215, 144]. Other techniques leverage

virtualization to monitor [144], reconstruct [206, 182], or trigger [144] malicious Android app

behaviors.
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Besides MUDFLOW and Adagio, other approaches have used machine learning for distin-

guishing between benign and malicious Android apps. DroidMat [218] distinguishes between

benign and malicious apps through various features extracted using static analysis and

clustering. Furthermore, it relies on easily obfuscatable features (e.g., names of component

classes). We contacted the authors of DroidMat multiple times to obtain its implementation

so that we can compare against it. However, none of the authors ever responded to our

queries.

AppContext [222] utilizes extensive analyses and machine learning involving information flow,

Intent filters, Intent actions, and other context factors (e.g., conditions guarding security-

sensitive behaviors). Although we considered including AppContext in our study, we could

not set up a controlled experiment in the form we used to compare against MUDFLOW

and Adagio for two key reasons. First, AppContext is not distributed with its source code,

preventing us from modifying its training set as we did with MUDFLOW and Adagio. Second,

this limitation further prevents us from comparing with AppContext in terms of its training

execution time. However, our analysis takes about 30 seconds on average to analyze a

single app; the AppContext study reports an average analysis time of 647 seconds [222].

Furthermore, as discussed in Section A.2.1, Intent actions are likely to significantly reduce

obfuscation resiliency due to their susceptibility to encryption transformations.

Drebin [63] is designed to detect Android malware directly on an Android device and uses

machine learning. Drebin also uses pre-defined templates to display potentially useful

information about what makes an app malicious. Unlike RevealDroid, Drebin relies heavily

on features based on constant strings (e.g., names of components) that are obfuscatable using

basic automated transformations (e.g., renaming and encrypting identifiers and string values),

as demonstrated in our evaluation. Furthermore, their feature space is very large, containing

about 545,000 features, as compared to RevealDroid’s feature space of about 1,000 features,
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which allows our classification—and potentially our feature extraction—to be significantly

more efficient and scalable.

ViewDroid [224] and MassVet [88] are capable of detecting malicious Android apps and both

focus on repackaging detection. Both techniques leverage graphs based on UI widgets of

an Android app. Due to the use of control flow-based graphs, both of these techniques are

potentially susceptible to control flow-based obfuscations. RevealDroid is not vulnerable

to such obfuscations, due to the fact that it does not rely on any program-analysis graph

representations. Unlike in the case of RevealDroid, no automated transformations were

applied to existing malicious apps to assess MassVet; automated transformations were applied

to benign apps for MassVet. However, as discussed in the MassVet paper [88], obfuscations of

malicious methods may be problematic for MassVet. Additionally, whether the transformed

benign apps utilized combinations of transformations was not discussed. Unlike MassVet and

ViewDroid, RevealDroid is capable of accurately identifying the family to which a malware

belongs, and not just identifying an app as malicious. Furthermore, RevealDroid is not

limited to only detecting and identifying families of repackaged malicious apps.

A variety of other techniques use different mechanisms for detecting Android malware. Droid-

Analytics [231] provides an automated workflow for the collection and signature generation

of Android malware by analyzing apps at the opcode level. AsDroid [129] detects stealthy

behaviors of possibly malicious apps characterized by mismatches between program behavior

and the UI. Poeplau et al. [174] construct a static analysis tool for identifying unsafe and ma-

licious dynamic code loading. HARVESTER [177] extracts features relevant to anti-analysis

techniques (e.g., obfuscations and emulator detection techniques) from Dalvik bytecode using

static and dynamic analyses. Unlike HARVESTER, RevealDroid aims to utilize lightweight

static analysis and machine learning to identify malicious apps, and directly analyzes apps’

native binaries.
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Besides not identifying malware families, most of the above techniques rely on heavyweight

program analysis, unlike RevealDroid’s lightweight analysis.

Several approaches focus on identifying specific malware families. Apposcopy [112] provides a

language to specify malware signatures and a static analysis to identify apps matching those

signatures. For Apposcopy, security engineers must manually construct malware signatures,

which is a time-consuming and error-prone task.

A few approaches automatically identify the family of Android malware. Dendroid [204]

utilizes text-mining techniques and control-flow features to identify families of malicious

apps. DroidSIFT [225] employs extracted dependency graphs to determine whether an app is

benign or malicious, and the family of a malicious app.

Two approaches that automatically identify the family of Android malware using static

analysis—Dendroid and DroidSIFT—are both limited, when compared to RevealDroid, in

three key ways: (1) they have limited or no reflection features, (2) they have no native-code

features and (3) they perform a highly limited assessment for obfuscation resiliency, or no

such assessment at all. Both approaches are evaluated on a limited number of malware

families and apps. On the other hand, we evaluate RevealDroid on a dataset consisting of

tens of thousands of more apps, and several hundred more malware families studied as part of

the DroidSIFT paper. Additionally, DroidSIFT utilizes flow features, which are heavyweight

to extract, as demonstrated in our experiments, and do not account for statically unresolvable

or partially resolvable reflective calls.

Both techniques have limited obfuscation resiliency, and rely on representations (e.g., control-

flow features or constant strings) that can be evaded by using standard automated transfor-

mations. Furthermore, DroidSIFT is only assessed using unstated obfuscations applied to a

small number of apps from a single malware family.
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A third approach, DroidScribe [98], uses dynamic analysis and machine learning to identify

the family to which a malicious app belongs. However, it does not determine whether an app

is benign or malicious.

None of the aforementioned approaches extract native-code features by actually analyzing an

app’s native binaries. Furthermore, RevealDroid is the only Android malware detection and

family-identification approach that combines machine learning with static analysis extraction

of features based on Android API usage, reflection, and native code.

A.5 Conclusion

This chapter has introduced RevealDroid, a machine learning-based approach for Android

malware detection and family identification that is accurate, efficient, and obfuscation resilient.

RevealDroid relies on features involving security-sensitive Android andAPI calls; reflective

calls categorized according to the degree to which invoked methods can be resolved; and

invocations in native binaries to external functions (e.g., system calls or shared library calls)

and functions within the binaries. We have compared RevealDroid with state-of-the-art tools

for Android malware detection and family identification. For Android malware detection,

RevealDroid obtains an 11%-60% superior accuracy compared to state-of-the-art tools. In

the case of family identification, RevealDroid attains a 24%-70% higher classification rate.

Our experiments showcase RevealDroid’s high accuracy and efficiency (e.g., a 98% F1 score

for 54,882 apps and an app extraction time of 90 seconds on average), with particularly high

accuracy under various obfuscations. We further compared RevealDroid to a state-of-the-art

family-identification approach, demonstrating significantly higher accuracy—95% accuracy

on a high quality Android malware family dataset—especially in the face of obfuscations.
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In the future, we intend to explore feature characteristics of emerging malware apps—such

as those that infect an Android device’s Master Boot Record [12] and stealthily utilizing

devices to mine cryptocurrency services [3]—in order to detect and identify the families of

those malware. To enable replication of our results and improvement over RevealDroid, we

make our RevealDroid prototype and data available online at [7].
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