
A Large-Scale Empirical Study on the Effects of Code
Obfuscations on Android Apps and Anti-Malware Products

Mahmoud Hammad, Joshua Garcia, and SamMalek
Department of Informatics

University of California, Irvine
Irvine, California, USA

{hammadm, joshug4, malek}@uci.edu

ABSTRACT
The Android platform has been the dominant mobile platform in
recent years resulting inmillions of apps and security threats against
those apps. Anti-malware products aim to protect smartphone users
from these threats, especially frommalicious apps. However, mal-
ware authors use code obfuscation on their apps to evade detection
by anti-malware products. To assess the effects of code obfuscation
on Android apps and anti-malware products, we have conducted
a large-scale empirical study that evaluates the effectiveness of
the top anti-malware products against various obfuscation tools
and strategies. To that end, we have obfuscated 3,000 benign apps
and 3,000 malicious apps and generated 73,362 obfuscated apps
using 29 obfuscation strategies from 7 open-source, academic, and
commercial obfuscation tools. The findings of our study indicate that
(1) code obfuscation significantly impacts Android anti-malware
products; (2) the majority of anti-malware products are severely
impacted by even trivial obfuscations; (3) in general, combined
obfuscation strategies do not successfully evade anti-malware
products more than individual strategies; (4) the detection of
anti-malware products depend not only on the applied obfuscation
strategy but also on the leveraged obfuscation tool; (5) anti-malware
products are slow to adopt signatures of malicious apps; and (6) code
obfuscation often results in changes to an app’s semantic behaviors.
ACMReference Format:
Mahmoud Hammad, Joshua Garcia, and Sam Malek. 2018. A Large-Scale
Empirical Study on the Effects of Code Obfuscations on Android Apps and
Anti-Malware Products. In ICSE ’18: ICSE ’18: 40th International Conference
on Software Engineering , May 27-June 3, 2018, Gothenburg, Sweden. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3180155.3180228

1 INTRODUCTION
Android is the dominant mobile platform holding 85% of the
smartphone OS market share [11]. At the same time, the number
and sophistication of malicious Android apps are increasing. For
instance, McAfee Labs crawled several app stores over six months
in 2016 and detected more than 9 million malicious apps [10]. As
another example, Kaspersky discovered more than 4 million new
malware in 2016 [9].

Many reasons contribute to this meteoric rise of malware apps
including: (1) the relative ease of creating a piggybacked app

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5638-1/18/05. . . $15.00
https://doi.org/10.1145/3180155.3180228

[35–38, 48], i.e., a mutated version of a legitimate app injected with
either malicious code or embedded advertisements; and (2) the
prevalence of alternative Android app stores (i.e., app stores other
than the official Android app store, Google Play [19]), on which
malicious apps may be distributed to users.

To protect mobile devices, users often rely on anti-malware prod-
ucts, which scan apps to determine if they are benign or malicious.
However, many malware apps have previously evaded detection by
these products. Examples of such malicious apps include Brain Test
[7], VikingHorde [12], FalseGuide [18], and DressCode [8]. These
apps have infected millions of users before they were detected. To
evade detection, malware authors often rely on code obfuscation.

Code obfuscation transforms code into a form that is more
difficult for humans, and possibly machines, to read, understand,
and reverse engineer. These transformations change the syntax of
code but not their semantics [30]. These changes could be small (e.g.,
inserting unused code) or sophisticated (e.g., performing bytecode
encryption)[44]. Although code obfuscations are used by malware
authors, they are also used by benign app developers to increase
the difficulty of reverse engineering their apps.

To better protect the intellectual property of benign app develop-
ers and prevent cloning of their apps, several companies have devel-
opedobfuscation tools, orobfuscators for short, that implementdiffer-
ent code transformations (e.g., identifier renaming, stringencryption,
reflection, etc.). Given the use of obfuscations by malware authors,
the goal of this study is to assess the performance of commercial anti-
malware products against various obfuscation tools and strategies.

Although some researchers have studied an individual obfus-
cation tool’s effectiveness on a limited number of anti-malware
products [32, 34, 40, 43, 44, 47], no study has performed a large-scale
assessment of (1) the effect of individual and combined obfuscation
strategies provided by multiple obfuscations tools on anti-malware
products, (2) the effect the tools and strategies have on the accuracy
of anti-malware products for benign apps and not just malicious
apps, (3) the effect of time on obfuscated-app detection by those
products, and (4) whether the application of obfuscation strategies
result in valid, installable, and runnable apps. Due to the lack of
a study regarding the effect of specific and combined obfuscation
strategies on anti-malware products, it is unclear which strategies
evade such products the most. None of the aforementioned studies
determine the extent to which anti-malware products erroneously
consider obfuscated, benign apps as malicious, which is undesirable
for both anti-malware product vendors and benign app developers.

To determine if the transformations applied by obfuscation
tools break an app’s semantics, our study investigates the ability
of obfuscation tools to generate valid, installable, and runnable
apps. An obfuscated app is not useful to a benign app developer or
malicious author if it cannot be executed on a device or if its benign,
functional behavior changes. To ensure an app’s obfuscation is

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Mahmoud Hammad, Joshua Garcia, and SamMalek

successful, our study further compares the behavior of an obfuscated
app with the behavior of its corresponding original app.

Overall, this paper makes the following contributions:
• We assess the accuracy of over 60 anti-malware products on
apps obfuscated using 7 obfuscation tools and 29 obfuscation
strategies on 3,000 benign apps and 3,000 malicious apps, totaling
over 73,000 obfuscated apps. We further consider the effect of an
app’s age on that accuracy.
• We evaluate the ability of 7 obfuscation tools to generate Android
apps that are valid, installable, and runnable.
• Based on our results, we make suggestions for improving
anti-malware products and obfuscation tools.
• To conduct this study, we have implemented a framework for
obfuscating Android apps and scanning them using anti-malware
products. The framework is reusable, can be extended to include
more obfuscation tools and strategies, and is available online [21],
along with our resulting dataset of over 73,000 obfuscated apps.
The remainder of this paper is organized as follows. Section 2

covers background information about Android apps and code ob-
fuscation. Section 3 discusses the research questions that this study
aims to answer. The researchmethodology of this study is presented
in Section 4. The results and the findings are reported in Section
5. Section 6 discusses the results and provides recommendations to
enhance anti-malware products and obfuscation tools. The threats
to validity are presented in Section 7. Finally, the paper overviews
the related literature (Section 8) and concludes (Section 9).

2 BACKGROUND
This section provides a brief overview of Android apps and obfus-
cation strategies to help the reader understand the rest of the paper.
2.1 Android Apps
EachAndroid app is packaged anddistributed as anAndroid Package
Kit (APK) file, which is a zipped file that is mainly written in Java.
Each APK file contains a manifest file, resources (e.g., images), and
the app’s bytecode. An app’s code is compiled intoDalvik EXecutable
(DEX) format, which can be executed on a customized Java Virtual
Machine (JVM). There are two JVMs that can execute the DEX
format: Android Runtime (ART), introduced in Android version 5
(Lollipop); and Dalvik Virtual Machine (DVM), for older versions.
classes.dex, the main DEX file of an Android app, is a file in the APK
generated by dx, a utility that converts .class files into a DEX file.

classes.dex can be disassembled by Baksmali [23] into an
Intermediate Representation (IR) format which, in turn, can be
assembled by Smali [23] to generate a new variant of classes.dex.
The new classes.dex can be repackaged using a tool such asApktool
[1], a reverse-engineering tool for Android APK files, to generate a
new APK variant (e.g., an obfuscated app). Different IR formats can
be generated from classes.dex, including Smali code using Apktool
and .class files using DARE [42] or dex2jar [16]. Moreover, Soot [45]
can generate various IRs such as Baf, Jimple, Shimple, Grimp, or
even a low-level IR such as Jasmin.
2.2 Obfuscation Strategies
To study the effectiveness of anti-malware products, we applied
several different obfuscation strategies on each Android app. We
use the term obfuscation strategy to refer to a single transformation
or multiple transformations applied to an Android app. We consider
three types of strategies: trivial strategies, non-trivial strategies, and
combined strategies. Table 1 presents abbreviations of the trivial and
non-trivial obfuscations, which will be used throughout this paper.

Table 1: Obfuscation-strategy abbreviations
Trivial Obfuscation Non-trivial Obfuscation

Disassembly/
Reassembly DR Junk code

insertion JUNK Identifier
renaming

IDR

AndroidManifest MAN Class renaming CR Control
flow

CF

Alignment ALIGN Member
reordering MR Reflection REF

Repackaging REPACK String
encryption ENC

Trivial obfuscation strategies are code transformations that
do not change the app’s bytecode. For this study, we examined the
following trivial strategies:
• Repackaging (REPACK) involves unzipping the APK file and
re-signing it with a different signing certificate. This simple trans-
formation thwarts anti-malware products that rely on the app’s
certificate to determine if the app ismalicious or not. For this trans-
formation, we unzip an APK file using the zipfile Python library
and resign it with our own signing certificate using jarsigner [20],
a tool for verifying and generating digital signatures for JAR files.
• Disassembling and Reassembling (DR) involves disassembling
the app using a reverse-engineering tool, such as Apktool,
reassembling the app, and then signing it. By disassembling and
reassembling the app, the items in classes.dex will be reordered.
Anti-malware products that rely on matching classes.dex against
signatures of knownmalicious apps would be broken.
• AndroidManifest transformation (MAN): Each Android app
contains a configuration file called AndroidManifest.xml file,
which specifies the principal components that constitute the
application, including their types and capabilities, as well as
required and enforced permissions. This transformation changes
the manifest by adding permissions or adding components’
capabilities, called Intent Filters in Android.
• Alignment (ALIGN) realigns all uncompressed data, such as im-
ages or raw files, in an APK file. This transformation changes the
cryptographic hash of an APK file. Therefore, if an anti-malware
product identifies malicious apps based on their cryptographic
hashes (e.g., MD5), this transformation can thwart it.
Non-trivial obfuscation strategies are code transformations

that change an app’s bytecode. We study the following non-trivial
obfuscation strategies:
• Junk code insertion (JUNK) adds code that does not affect the exe-
cution of an app. Junk code insertion can add null operations (nop),
comments, and/or debugging information to a classes.dex file.
• String encryption (ENC) encrypts the strings in classes.dex and
adds a function that decrypts the encrypted strings at runtime.
Anti-malware products that rely on the string data in an app to
determine if it is malicious will be evaded by this transformation.
• Control-flow manipulation (CF) changes the methods’ control-
flow graph by adding conditions and iterative constructs. In
addition, this transformation changes the app’s call graph by
adding newmethods and fake calls to the newly added methods.
• Members reordering (MR) changes the order of instance variables
or methods in a classes.dex file, which evades anti-malware
products that depend on the sequence of members in a class.
• Identifier Renaming (IDR) renames the instance variables and/or
the method names in each Java class with randomly generated
names. This transformation changes signatures generated from
identifiers and changes themethod table in Dalvik bytecode.

2

A Large-Scale Empirical Study on the Effects of Code
Obfuscations on Android Apps and Anti-Malware Products ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

• Class renaming (CR) renames the classes and/or the packages
in an app with randomly generated names. This transformation
changes themethod table in the Dalvik bytecode.
• Reflection (REF) transformations convert direct method invoca-
tions into reflective calls using the Java reflection API, which can
evade static analyses that rely on direct method calls.
Combined strategies are combinations of the aforementioned

obfuscation strategies. Previous work [40, 44] has mentioned that
combining obfuscation strategies result in stronger obfuscations.
Our study leverages different combined strategies to understand
which combinations of transformations will result in better evasion
of anti-malware products. The majority of our leveraged combined
strategies have not been empirically studied in previous work.

3 RESEARCHQUESTIONS
In this paper, our primary goal is to provide a large-scale empiri-
cal study that evaluates the effectiveness of anti-malware products
against various obfuscation tools and strategies. To that end, this
section presents and discusses the research questions this study at-
tempts to answer.Moreover, this section showswhowill benefit from
answering each research question. In the remainder of this section,
we introduce and motivate each research question that we study.
RQ1.How is the accuracy of anti-malware products affected by
obfuscation strategies?

The use of code obfuscation in Android apps has become popular
and is leveraged by both benign andmalicious app developers. Given
that smartphone users rely on anti-malware products to protect their
devices, it is crucial for anti-malware products to distinguish mali-
cious apps frombenignoneswithhighaccuracy,while being resilient
to obfuscation. RQ1aims tomeasure the accuracyof commercial anti-
malwareproducts against abroad rangeofobfuscation strategies.We
measure accuracy in this paper using precision and recall, since these
metrics take into account false positives (i.e., benign apps marked as
malicious) and false negatives (i.e.,malicious appsmarked as benign).

Anti-malware providers will benefit from answers to RQ1 in
order to improve their products, especially against the obfuscation
strategies that thwart their products the most. In addition, the
answers to RQ1 can help smartphone users choose between
anti-malware products. Benign app developers will benefit from
answers to RQ1 by learning which obfuscation strategies prevent
their apps from being flagged as malicious.
RQ2.How is the accuracy of anti-malware products affected by
obfuscation tools?
Each anti-malware product’s effectiveness likely varies based

on the implementations of obfuscation strategies provided by an
obfuscation tool. To make that determination, RQ2 measures the
accuracy of anti-malware products on obfuscation tools, where
accuracy is again measured in terms of precision and recall.

Anti-malware product vendors, benign app developers, and obfus-
cation tool developers can benefit in several ways from the answers
to RQ2. Anti-malware product vendors can use this information to
determine which specific implementations of obfuscation strategies
may cause false positives (i.e., benign apps marked as malicious)
in their products. Similarly, these vendors can benefit from learning
which obfuscations result in successful evasion from detection by
malicious apps. Answers to RQ2 can aid benign app developers in
choosing the obfuscation tools that will prevent their apps from er-
roneously beingmarked as malicious. Furthermore, if false positives
or false negatives (i.e., malicious apps marked as benign) are due

to obfuscation tools, as opposed to the anti-malware products, then
this information is useful for correcting obfuscation tools.
RQ3.How is the accuracy of anti-malware products affected by
the year an app is created?

RQ3 aims to study the accuracy of anti-malware products on
non-transformed and transformed apps over different time periods,
where each time period for our study spans two years. We consider
transformed apps as belonging to the same time period as their
non-transformed versions. For example, if we transform apps
created in time period 2012-2013, we still consider the resulting
obfuscated apps as created in 2012-2013, for the purposes of RQ3.

This research question allows us to understand the effectiveness
of anti-malware products when applied to different time periods and
to determine if those products’ detection accuracies are affected by
time. Anti-malware vendors can use this information to determine
the time periods that result in poor accuracy for their products,
aiding themwith improving results for apps created during those
problematic time periods.
RQ4. To what extent do obfuscation tools result in valid,
installable, and runnable apps?
Although an obfuscated app does not need to be runnable when

scanned by an anti-malware product, developers of benign apps and
obfuscation tools rely on those tools to produce valid, installable, and
runnable apps. Similar to [34], we consider an APK to be valid if an
obfuscation tool successfully generates a signed APK package that
includes a classes.dex file containing correct Dalvik bytecode syntax.
An app is installable if it can be successfully deployed into the
Android runtime. For our purposes, a transformed app is runnable if
its runtime behavior is similar to its non-transformed version. RQ4
is particularly useful for obfuscation tool developers since answers
to that question provide information about transformations that
result in malformed apps.

4 RESEARCHMETHODOLOGY
This section describes the research methodology that we pursued
in terms of our study subjects, selected obfuscation tools, our
evaluation framework, and our selected anti-malware products.
4.1 Study Subjects
Weusedadatasetofbenignappsconsistingof3,000apps fromGoogle
Play and 3,000malicious apps. To avoid havingmalicious apps in our
ground-truth dataset of benign apps, we obtained benign apps from
AndroZoo [26], which is a collection of more than 5.5 million apps
collected from several sources, including Google Play. AndroZoo
apps have been scanned by commercial anti-malware products
using the VirusTotal service [4], a free online service provided by
Google that scans URLs, files, and Android apps. Approximately
25,000 Google Play apps out of nearly 2 million apps in AndroZoo
are marked as benign by all anti-malware products. From these
25,000 apps, we have randomly selected 3,000 apps for this study.
Themalicious apps belong to several malware repositories including
Android Malware Genome [49], Contagio [6], AndroTotal [39], the
Drebin dataset [27] and VirusShare [5]. In addition to these malware
repositories, we used the VirusTotal service to include recently
discovered malicious apps that belong to the following malware
families: BrainTest [7], VikingHorde [12], and FalseGuide [18].
4.2 Obfuscation Tools
We have included the following obfuscation tools for our study,
whose supported obfuscation strategies are depicted in Table 2:

3

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Mahmoud Hammad, Joshua Garcia, and SamMalek

Figure 1: Obfuscation studymethodology

Table 2: Obfuscation strategies of each obfuscation tool
Trivial Non-trivial

Obfuscator/Strategy A
LI
G
N

D
R

M
A
N

RE
PA

CK

CF CR EN
C

ID
R

JU
N
K

M
R

RE
F

Apktool/Jarsigner ✓ ✓

Allatori ✓ ✓ ✓ ✓

DashO ✓ ✓ ✓

DroidChameleon ✓ ✓ ✓ ✓ ✓ ✓

ADAM ✓ ✓ ✓ ✓ ✓

ProGuard ✓

• Allatori [3] is a commercial Java and Android obfuscation tool
that supports a wide range of obfuscation strategies. Many
companies such as Amazon, Fujitsu, andMotorola rely onAllatori
to protect their software systems from being reverse engineered.
The providers of this tool, Smardec Inc., provided us with a full
version for educational purposes.
• ProGuard [22] is a widely used open-source shrinker, optimizer,
obfuscator, and preverifier for Java bytecode. A preverifier
performs certain checks on Java bytecode prior to runtime.
ProGuard supports identifier renaming and is the default tool in
many development environments, including Android Studio [14],
the official IDE for Android apps.
• ADAM [47] is a research tool for obfuscating Android apps. It
transforms the Smali code of a reversed-engineered app.
• DroidChameleon [44] is a state-of-the-art research tool for obfus-
cating Android apps which supports a wide range of obfuscation
strategies. Compared to ADAM, DroidChameleon supports
more complex transformations. Like ADAM, DroidChameleon
transforms the Smali code of a reversed-engineered app.
• DashO [15] is a commercial tool for obfuscating Android and Java
applications. DashO provides static analysis protection and run-
time security control against tampering, unauthorized debugging,
and some runtime attack patterns. This tool supports control-flow,
string-encryption, and identifier-renaming transformations. The
providers of DashO, PreEmptive Solutions, supplied us with a
full free version valid for 30 days.
• Apktool and Jarsigner were used to perform the DR and REPACK
obfuscation strategies, respectively. These two transformations of-
ten work in tandem because a reassembled APKmust be resigned.
We also considered another tool, DexGuard [17], which is an

advanced and commercial version of ProGuard. We contacted the
providers of DexGuard to obtain an educational or commercial
version of their tool to run on our dataset. Unfortunately, they only
allow their tool to run on a restricted number of Android apps; and
they do not sell licenses for research purposes. Hence, we did not
include it in this study.
4.3 Evaluation Framework
To conduct our study, we have developed the framework depicted in
Figure 1, which consists of the following four modules: IR Converter,
IR Transformer, APK Generator, and Data Analyzer. IR Converter
takes an Android APK as input and converts its code to Intermediate

Representation (IR) formats. IR Transformer utilizes all obfuscation
tools to transform the IR format using a variety of obfuscation
strategies. APK Generator repackages each obfuscated IR file and
generates an obfuscated APK from that file. Data Analyzer scans
obfuscated apps using anti-malware products, stores the scanning
results in a MySQL database, analyzes the scanning results, and
creates various statistical reports.

Our framework is reusable and extendable. A user can add new
obfuscation tools and support different obfuscation strategies.
Therefore, we make the framework available for researchers and
practitioners [21]. The framework is a Python program that consists
of more than 5,500 lines of code, not counting the obfuscation tools.

IR Converter. Obfuscation tools do not require source code
and they work directly on the IR format. Therefore, this module
converts an APK file to two IR formats: smali using Baksmali and
Java bytecode using dex2jar. In our framework, we generate these
two IR formats since ADAM and DroidChameleon work on smali
code while all other obfuscation tools work on Java bytecode.

IR Transformer. This module generates several obfuscated IR
files of the original IR file. The framework is configured to leverage
twenty nine different obfuscation strategies using seven obfuscation
tools (recall Section 4.2).

APKGenerator. For each obfuscated IR file, this module gener-
ates an obfuscated Android app. First, this module leverages the dx
tool fromtheAndroidSDKtoconvert anobfuscated IR toa classes.dex
file. Next, it generates an APK file with the new classes.dex using
Apktool. Finally, the APK file is signed using jarsigner with our own
certificate, since the original certificate of the app cannot be obtained.

Data Analyzer. This module uses the VirusTotal service to
scan apps using anti-malware products. This module uploads
the apps to VirusTotal, which scans them using more than 60
up-to-date commercial anti-malware products. For each uploaded
app, VirusTotal returns a unique scanning ID, which Data Analyzer
uses later to download the scanning reports and stores them in a
MySQL database. Data Analyzer queries and processes the database
to generate various statistical reports.
4.4 Anti-malware Products
We have evaluated the accuracy and the resiliency of 61 commercial
anti-malwareproducts againstobfuscations.Due to space limitations
and to ensure readability, we focus on the results of the 21most popu-
lar Android anti-malware products in this paper; however, we make
the results for all 61 anti-malware products available online [21].

Table 3 shows the anti-malware products evaluated in this study
and includes the following information for each product: its number
ofDownloads; its overall user satisfactionscoreas representedusinga
star-rating (Stars); and thenumberofuserswhoreviewed theproduct
(Reviewers). The numbers in Table 3 are obtained from Google Play.

5 DATAANALYSIS ANDRESULTS
For conducting our experiments, we have leveraged a high perfor-
mance computing cluster (HPC), managed by our organization, that
has more than 200 compute nodes with a total of more than 8,000
cores. Each compute node has 264GB-512GB RAM.We utilized HPC

4

A Large-Scale Empirical Study on the Effects of Code
Obfuscations on Android Apps and Anti-Malware Products ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Table 3: Anti-malware products (K: Thousand. M:Million)
Product Downloads Stars Reviews Product Downloads Stars Reviews

Ikarus 100K - 500K 4.2 2,862 Trustlook 10M - 50M 4.4 476,671

Emsisoft 100K - 500K 4.2 1,425 McAfee 10M - 50M 4.4 506,491

Fortinet 100K - 500K 4.2 2,086 Avira 10M - 50M 4.5 441,016

AegisLab 100K - 500K 4.2 2,905 Norton
10M - 50M 4.5 946,230

F-Secure 500K - 1M 4.1 12,183 Symantec

Comodo 500K - 1M 4.6 33,395 ESET-
NOD32

10M - 50M 4.7 490,840

GData 1M - 5M 4.0 8,850 Kaspersky 10M - 50M 4.7 2,061,983

Sophos 1M - 5M 4.3 11,816 DrWeb 50M - 100M 4.5 1,044,410

TrendMicro 1M - 5M 4.6 49,977 Antiy-
AVL

100M - 500M 4.1 2,166

BitDefender 5M - 10M 4.5 88,809 Avast 100M - 500M 4.5 4,724,478

CAT-
QuickHeal

5M - 10M 4.4 204,709 AVG 100M - 500M 4.5 5,785,171

to run thousands of jobs simultaneously. On each app, we applied
29 different obfuscation strategies: 4 trivial transformations, 7 non-
trivial transformations, and 18 combined transformations. Table
4 shows the number of obfuscated apps resulting from applying
the 29 obfuscation strategies leveraged by the obfuscation tools.
An empty cell indicates an obfuscation strategy that is not support
by a particular obfuscation tool. In total, we have generated 73,362
obfuscated apps from 3,000 benign apps and 3,000 malicious apps.

In the remainder of this section, we present the results of our ex-
periments. We measured the effectiveness of anti-malware products
at identifying malicious apps in terms of their precision, which mea-
sures the extent to which benign apps are labeled as malicious, and
recall, whichmeasures the extent towhichmalicious apps are labeled
as benign.Weuse the F-score, i.e., theharmonicmeanofprecisionand
recall, tomeasure theoverall detection rate of anti-malwareproducts.
5.1 RQ1. Obfuscation Strategies
We studied the accuracy of anti-malware products with respect to
a wide variety obfuscation strategies in two scenarios. In the first
scenario (Section 5.1.1), we compare the detection rates of each anti-
malware product on the original dataset and the obfuscated dataset.
In the second scenario (Section 5.1.2), we measure the detection rate
of anti-malware products against each obfuscation strategy.

5.1.1 Detection rate on original and obfuscated apps. Figure 2
shows the detection rate of 21 anti-malware products on the original
dataset of 6,000 apps, depicted as black bars, and the obfuscated
dataset of 73,362 apps, depicted as gray bars. Figure 2 demonstrates
that the detection rate of anti-malware products on the original
dataset is above 85% for 16 products, and between 75% and 85% for
4 anti-malware products. TrendMicro exhibits the lowest detection
rate, 56%. The average detection rate is 87% on the original dataset.
Consequently, prior to application of obfuscation strategies from ob-
fuscation tools, these top anti-malware products are quite effective
at protecting Android users; albeit there is room for improvement.

Once obfuscation strategies are applied, the detection rates for
those anti-malware products decrease significantly, as shown in
Figure 2. For example,AegisLab achieves the highest detection rate
on the original dataset, 96%, since it mislabeled only 247 apps in
the original dataset. Its detection rate has dropped to 55% on the
obfuscated dataset—a 40% decrease—as it mislabeled 27,636 apps.
Other anti-malware products are also severely impacted by code
obfuscation. While the average detection rate of anti-malware

Figure 2:Detection rate of 21 anti-malware products on 6,000
original apps and 73,362 obfuscated apps.
products on the original apps is 87%, the average detection rate on
the obfuscated dataset is 67%—a 20% decrease.

Finding 1: Code obfuscation significantly impacts Android
anti-malware products. The average detection rate for the top
anti-malwareproducts decreases from87% to 67%—a20%decrease.

5.1.2 Detection rate for each obfuscation strategy. To better
understand the impact of every obfuscation strategy on each anti-
malware product, Table 5 presents the detection rate of anti-malware
products, expressed as the F-score, on the original dataset and the
various obfuscation strategies. For example, the detection rate of
Symantec on the original dataset is 93%. This detection rate has
dropped to 64%on obfuscated apps usingMAN, to 69% on obfuscated
apps using ENC, and to 31% on obfuscated apps using ENC_IDR.

Table 5 demonstrates that the majority of anti-malware products
are not affected by REF. We consider a transformation’s effect on
a product’s detection rate to be negligible if the detection rate has
either improved, decreased by less than 3%, or remains above 85%.
In fact, the accuracy of F-Secure, GData, BitDefender, and Emsisoft
improves on apps obfuscated usingREF. This result indicates that the
intensive use of code reflectionmakes an app look suspicious to our
studied anti-malware products, improving their detection rates. Un-
fortunately, this phenomenonmay result in false positives for certain
anti-malware products. For instance,AVG erroneously marked 307
benign apps obfuscated using REF as malicious, while also correctly
detecting nearly all malicious apps obfuscated using REF.

Finding 2: REF transformations make apps look suspicious,
increasing the chance of an app being labeled as malicious.

Perhaps most surprising is that certain trivial obfuscation strate-
gies are quite effective against the top anti-malware products. No-
tably, the anti-malware products that we studied rely heavily on
analyzing an app’s manifest file, which contains configuration in-
formation. Consequently, these products are often evaded by apps
obfuscated usingMAN,which involves the trivial addition ormodifi-
cation of permissions or Intent filters. For example, the detection rate
ofMcAfee dropped from 94% to 21% for apps obfuscated using MAN.
Overall, the average detection rate of anti-malware products fell to
60%from87%whenappsareobfuscatedusingMAN—a28%decrease.

Finding 3: MAN, which is a trivial obfuscation strategy, severely
impacts many anti-malware products, on average, decreasing a
product’s detection rate by 28%.

Another interesting, possibly counter-intuitive, conclusion that
we can draw from Table 5 is that combined transformations are not
always superior to individual transformations. For instance, while

5

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Mahmoud Hammad, Joshua Garcia, and SamMalek

Table 4: Number of obfuscated apps using the obfuscation strategy in the column leveraged by the obfuscator in the row.

Trivial Non-trivial Combined Strategies _R
EF

Ob
fu
sca
to
r/S
tra
teg
y

A
LI
G
N

D
R

M
A
N

R
EP

A
C
K

C
F

C
R

EN
C

ID
R

JU
N
K

M
R

R
EF

C
F_

EN
C

C
F_

ID
R

C
F_

M
A
N

C
F_

M
R

C
R
_M

A
N

EN
C
_I
D
R

EN
C
_M

A
N

JU
N
K
_M

A
N

M
A
N
_R

EF

C
F_

C
R
_M

A
N

C
F_

EN
C
_I
D
R

C
F_

EN
C
_M

R

C
F_

ID
R
_M

R

C
F_

R
EF

_M
A
N

EN
C
_R

EF
_M

A
N

C
F_

EN
C
_I
D
R
_M

R

C
F_

C
R
_E

N
C
_M

A
N
_R

EF

C
F_

C
R
_E

N
C
_J
U
N
K
_M

A
N

To
tal
ap
ps

Apktool/Jarsigner 3,693 5,880 9,573

Allatori 1,612 1,613 1,609 1,612 1,609 1,607 1,607 1,606 12,875

DashO 1,094 1,089 1,097 1,082 1,084 1,077 1,083 7,606

DroidChameleon 3,597 2,593 1,952 687 351 1,487 610 1,594 1,752 679 349 1,385 1,361 993 658 570 314 20,932

ADAM 5,487 0 4,175 2,708 4,119 4,182 20,671

ProGuard 1,705 1,705

Total apps 5,487 3,693 3,597 5,880 5,299 6,127 6,097 8,530 4,533 1,612 1,487 1,692 1,084 1,594 1,609 1,752 1,077 679 349 1,385 1,361 1,083 1,607 1,607 993 658 1,606 570 314 73,362

Table 5: (RQ1) Detection rate of anti-malware products, measured by their F-score (%), against each obfuscation strategy.

Trivial Non-trivial Combined Strategies _R
EF

Anti-malware O
ri
gi
na

l

A
LI
G
N

D
R

M
A
N

R
EP

A
C
K

C
F

C
R

EN
C

ID
R

JU
N
K

M
R

R
EF

C
F_

EN
C

C
F_

ID
R

C
F_

M
A
N

C
F_

M
R

C
R
_M

A
N

EN
C
_I
D
R

EN
C
_M

A
N

JU
N
K
_M

A
N

M
A
N
_R

EF

C
F_

C
R
_M

A
N

C
F_

EN
C
_I
D
R

C
F_

EN
C
_M

R

C
F_

ID
R
_M

R

C
F_

R
EF

_M
A
N

EN
C
_R

EF
_M

A
N

C
F_

EN
C
_I
D
R
_M

R

C
F_

C
R
_E

N
C
_M

A
N
_R

EF

C
F_

C
R
_E

N
C
_J
U
N
K
_M

A
N

AegisLab 96 84 52 36 92 52 35 53 39 62 66 58 41 11 57 66 37 3 68 61 58 43 4 65 66 66 68 63 58 35

Ikarus 94 95 94 66 96 75 84 81 86 86 93 88 75 77 84 88 85 64 89 86 89 86 60 84 87 93 89 82 92 87

CAT-QuickHeal 94 95 93 92 94 89 91 75 88 89 93 94 73 92 93 93 91 55 91 90 94 91 54 76 91 94 84 70 89 80

AVG 94 75 96 63 96 79 83 85 91 84 97 88 77 77 83 97 85 58 90 85 89 85 57 92 96 92 90 92 91 85

McAfee 94 90 50 21 93 47 20 45 52 16 73 23 20 41 17 73 20 21 22 20 22 17 22 66 66 15 18 63 14 20

ESET-NOD32 94 94 92 91 94 93 93 80 91 46 94 66 75 92 92 94 93 68 86 46 66 91 61 80 92 68 59 72 80 57

Fortinet 93 94 89 86 93 88 83 78 84 75 91 86 67 79 91 88 83 58 87 77 87 84 50 83 83 89 75 72 72 56

Symantec 93 86 87 64 88 76 84 69 79 84 92 88 63 68 83 92 85 31 90 85 89 85 31 75 90 92 90 73 91 85

Sophos 93 93 91 90 93 89 85 70 79 93 88 92 70 84 93 87 86 52 91 95 92 87 50 66 72 93 91 51 91 85

Avira 92 92 87 84 92 85 84 65 78 78 87 60 61 78 86 86 85 38 80 80 59 83 38 69 85 58 33 63 73 61

F-Secure 89 87 87 85 90 85 82 81 84 95 90 94 73 65 91 90 82 53 93 94 92 84 53 87 88 93 93 84 80 71

Comodo 88 88 27 16 82 22 17 19 24 17 19 15 17 20 11 33 16 20 14 18 16 11 20 20 26 9 14 23 11 18

GData 88 91 84 75 88 79 61 75 77 95 85 91 62 54 79 85 50 46 83 79 81 50 45 79 77 81 82 77 57 41

BitDefender 87 90 84 73 88 78 60 74 75 95 85 91 61 46 76 85 45 44 83 78 78 46 43 79 77 77 83 77 58 41

Emsisoft 87 90 84 73 88 78 60 74 75 95 85 91 61 46 76 85 45 43 83 78 78 46 43 79 77 77 83 77 59 41

DrWeb 87 88 83 81 88 89 86 90 86 93 88 40 92 89 90 88 86 90 94 94 41 90 89 88 87 39 40 87 36 35

Trustlook 84 10 23 0 48 17 0 22 20 0 36 0 2 3 0 38 0 1 0 0 0 0 2 40 39 0 0 40 0 0

Kaspersky 81 83 75 70 82 81 76 70 75 88 81 80 73 77 81 81 77 50 86 89 81 81 50 70 77 83 84 64 91 85

Antiy-AVL 78 79 56 26 80 41 22 47 47 13 68 18 20 25 12 70 21 24 12 8 20 12 25 70 69 12 15 65 8 7

Avast 75 75 63 57 75 73 66 66 66 78 74 75 71 67 78 74 68 46 91 79 76 76 45 60 69 83 91 47 91 86

TrendMicro 56 57 11 7 48 12 7 10 14 6 16 10 9 15 6 16 7 11 5 7 10 5 10 12 14 7 4 12 3 5

AVERAGE 87 83 72 60 85 68 61 63 67 66 76 64 55 57 66 77 59 42 68 64 63 60 41 68 73 63 61 64 59 51

the detection rate ofAVG against CF is 79%, its detection rate against
combined transformations that include CF is between 57% and 97%.

Finding 4: In general, combined transformations do not
affect detection rates more than single transformations: The
average detection rate of anti-malware products is 61% for single
non-trivial obfuscations, and 61% for combined obfuscations.

Figure 3 contains box-and-whisker plots illustrating the impact of
eachobfuscationstrategyonall anti-malwareproducts.These results
suggest that some obfuscation strategies have negligible effects on
themajority of anti-malware products. For example, REPACKdidnot
affect 19 anti-malware products. Similarly, the use of the MR trans-
formations did not affect 14 anti-malware products. Lastly, the REF
transformationdidnot thwart themajority of anti-malwareproducts.

Figure 3 demonstrates that ENC_IDR and CF_ENC_IDR are very
effective in thwarting anti-malware products. In fact, these two
transformations evaded all anti-malware products exceptDrWeb.

Finding 5: ENC_IDR and CF_ENC_IDR are the most successful
transformations for evading anti-malware products.

5.2 RQ2. Obfuscation Tools
For RQ2, we studied the detection rate of anti-malware products
on apps transformed using various obfuscation tools. To that end,
we analyze the results of each anti-malware product’s detection rate
on each obfuscation tool. We further assess the overall effect of each
obfuscation tool across all studied anti-malware products.

Table 6 depicts the detection rate of each anti-malware product
on apps transformed using each obfuscation tool. From Table 6, we

6

A Large-Scale Empirical Study on the Effects of Code
Obfuscations on Android Apps and Anti-Malware Products ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

Figure 3: (RQ1) The average detection rate of all anti-malware products regarding each obfuscation strategy.

Table 6: Detection rate of anti-malware products (F-score (%))
against each obfuscation tool

Anti-malware O
rig

in
al

A
D
A
M

A
pk

to
ol
/

Ja
rs
ig
ne
r

A
lla
to
ri

D
ro
id

Ch
am

el
eo
n

Pr
oG

ua
rd

D
as
hO

AegisLab 96 83 79 66 53 9 13
Ikarus 94 95 95 88 82 80 71
CAT-QuickHeal 94 95 94 86 90 80 75
AVG 94 75 96 95 81 90 71
McAfee 94 90 79 68 19 37 31
ESET-NOD32 94 94 93 88 83 90 80
Fortinet 93 94 91 85 85 74 69
SymantecMobileInsight 93 86 88 86 82 72 51
Sophos 93 93 92 75 90 78 69
Avira 92 92 90 80 77 62 60
F-Secure 89 87 89 88 89 92 61
Comodo 88 88 65 25 14 23 20
GData 88 90 86 81 76 90 50
BitDefender 87 90 87 81 74 90 45
Emsisoft 87 90 86 81 74 90 45
DrWeb 87 88 86 88 77 81 89
Trustlook 84 10 37 39 0 0 2
Kaspersky 81 83 79 76 81 70 66
Antiy-AVL 78 79 72 69 16 23 25
Avast 75 75 71 67 77 60 58
TrendMicro 56 57 35 14 7 10 12
AVERAGE 87 83 80 73 63 62 51

observe that some anti-malware products are severly impacted by
all obfuscation tools. For example, the detection rate of Trustlook
dropped to less than 40% on apps obfuscated using any of our
studied tools. Furthermore, Trustlook marked all apps obfuscated
by the following tools: DroidChameleon, ProGuard, and DashO as
benign apps. Likewise, TrendMicro and Comodo are evaded by all
obfuscation tools, except ADAM.

The box-and-whisker plot shown in Figure 4 depicts the effect
of each obfuscation tool on all anti-malware products. The figure
shows that the top anti-malware products are resilient against Apk-
tool/Jarsigner, ADAM, and Allatori. At the same time, DashO evades
the top anti-malware products more often than the other products.

We further assessed the variability of each obfuscation tool on our
studied anti-malware products, which indicates how consistently
each tool affects the accuracy of those products. To that end, we
considered the interquartile range (IQR) of the box plots in Figure 4.

Figure4: (RQ2)Theaveragedetectionrateofallanti-malware
products regarding each obfuscation tool.

IQR is the difference between the lower bound and the upper bound
of a box, which conveys the central tendency of top anti-malware
products against an obfuscation tool. A small IQR indicates that the
behavior of an anti-malware product is highly consistent. Figure
4 shows that ProGuard has the largest IQR.

ADAM and Apktool/Jarsigner, as shown in Figure 4, have a rel-
atively high median, 88% and 86%, respectively, with the lowest IQR,
i.e., 9% and 13%, respectively. This indicates that anti-malware prod-
ucts are resilient to these tools. Consequently, apps obfuscated by
ADAM and Apktool/Jarsigner work well for benign app developers,
who would want to obfuscate apps without having them be falsely
reported asmalicious, andwould be least useful formalware authors.

Finding 6: ADAM and Apktool/Jarsigner produce obfuscations
that reduce anti-malware product accuracy the least.

Figure 4 suggests that DashO is most successful at evading
anti-malware products, which aids malware authors. The average
detection rate of anti-malware products on obfuscated apps using
DashO is 51% with a median of 58%—a 37% decrease in the average
detection rate, and a 32%median decrease.

Finding 7: DashO reduces the accuracy of anti-malware products
more than other obfuscation tools in our study.

5.3 RQ3. Time-Aware Analysis
A significant factor that may interact with the effect of obfuscations
on anti-malware product accuracy is time. For RQ3, we conducted
a time-aware analysis that studies the accuracy of anti-malware
products on original and obfuscated apps that belong to the same
time period for the past 10 years. Figure 5 depicts the results of this

7

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Mahmoud Hammad, Joshua Garcia, and SamMalek

analysis. We grouped apps into two-year time periods, due to the
fact that some years only have a few apps, mainly 2009 with 29 apps,
and 2017 with 130 apps. Similar to [25], we consider the year of the
last modified date of classes.dex in an app as the year from which
it originates. We consider any transformed app as belonging to the
same year as its original version, in order to determine the actual
effect of obfuscation on product accuracy for each time period.

Figure 5: (RQ3) Time-aware analysis.
For the original dataset, Figure 5 shows that the top anti-malware

products maintain similar detection rates for any two consecutive
time periods prior to and including 2012-2013. Unfortunately, there
are significant decreases in the detection rate starting from the time
period between 2012-2013 and 2014-2015; the average detection rate
is 70% for 2014-2015, falling from 87% in 2012-2013. By 2016-2017,
the average detection rate falls to 53% on the original apps.

For the obfuscated dataset, Figure 5 illustrates that the detection
rates of anti-malware products decrease in a largely linear fashion.
The average detection rate starts at 67% on obfuscated apps from
2008-2009 and decreases to 39% on obfuscated apps from 2016-2017.
These results suggest that anti-malware products are slow to adopt
signatures of malicious apps.

The average detection rate on original apps from 2010 to 2013
are higher than the average detection rate on older apps. This
likely occurs because many malicious apps from 2010-2013 are
well-known and highly disseminated among security analysts.
For example, Android Malware Genome is a dataset of malicious
Android apps that are widely used, are described in a highly cited
paper [49], and were released in the 2010-2013 time period.

Finding 8: The average detection rates of anti-malware products
tend to decrease over time, indicating that such products are slow
to adopt signatures of malicious apps.

5.4 RQ4. Valid, installable, and runnable apps
An obfuscated app is not useful for app authors, unless the app
can run on a device. For that reason, RQ4 measures the ability of
obfuscation tools to generate valid, installable, and runnable apps.

5.4.1 Valid apps. Recall from Section 3, a valid obfuscated app
corresponds to a signed APK package that includes a classes.dex
file containing the correct Dalvik bytecode syntax. Table 7 depicts
the ability of obfuscation tools to generate valid obfuscated apps,
which we refer to as the obfuscation rate. The obfuscation rate is
measured using the ratio of the number of valid apps generated by
an obfuscation tool to the number of apps successfully retargeted
to Java bytecode. For example, ProGuard obfuscated 684 benign
apps out of 1,688 successfully retargeted benign apps, resulting
in an obfuscation rate of 41% for benign apps. Similarly, ProGuard

obfuscated 1,021 malicious apps out of 2,005 retargeted malicious
apps; hence, ProGuard’s obfuscation rate on malicious apps is 51%.

Table 7 shows that DashO has the lowest obfuscation rate (30%)
whereas DroidChameleon achieves the highest obfuscation rate
(60%). There are many reasons behind these low obfuscation rates,
including exceptions raised by obfuscation tools while transforming
anappand their inability toproduceavalidobfuscated classes.dex file.
For instance,Allatori raised this exception “com.allatori.IiIIIIiiii: Only
final fields may have an initial value!” on many apps. We contacted
the provider of Allatori about this exception, who informed us that
this problemhas been reported by other users, but could not be repro-
duced. Consequently, we helped them reproduce it to improve their
product. They reported to us that this exception is mainly caused by
the use of dex2jar, although a fix for the exception is still in progress.

Table 7: The ability of obfuscators to generate valid APKs.
ProGuard Allatori DroidChameleon DashO ADAM

Benign 40.52% 25.77% 81.57% 13.39% 79.57%

Malicious 50.92% 58.70% 56.10% 43.24% 59.87%

Total 46.17% 43.65% 59.95% 29.60% 69.72%

5.4.2 Installable and runnable apps. Tomeasure an obfuscation
tool’s ability to generate installable apps, we identified all original
apps that have at least one app transformed by each obfuscation tool.
For eachoriginal app, if there ismore thanoneapp transformedusing
the same obfuscation tool, we randomly select one of them. Using
that process,we randomly selected 250 original apps alongwith their
obfuscated versions, resulting in the selection of 1,750 obfuscated
apps.We ran this experiment on aMacBook Pro with a 2.2 GHz Intel
Core i7 and 16GB RAM, and installed the apps on an Android de-
vice. After we confirmed that all 250 original apps were successfully
installed on the Android device, we installed the obfuscated apps.

In addition to measuring app installability after obfuscation, i.e.,
the extent to which an obfuscator can generate installable apps, we
further measured app runnability after obfuscation, i.e., the extent
to which an obfuscator can generate runnable apps. For our study,
a runnable app can be order-agnostic or order-aware. A runnable
app is order-agnostic if its obfuscated version exhibits the same
set of running components and exceptions as its original version;
a runnable app is order-aware if its obfuscated version exhibits
the same sequence of running components and exceptions as its
original version. To determine app runnability after obfuscation,
we recorded the sequence of (1) components that execute and (2)
exceptions that occur during execution of an app usingMonkey [24],
a program that generates pseudo-random streams of user events
(e.g., clicks, touches, or gestures) and system-level events. We then
checked for equality of the sequences of running components and
exceptions of an original app and its obfuscated version, using 1,000
events for each app as input. We further ranMonkey using the same
random seed for each original app and its obfuscated version, in
order to test both app versions using the same sequence of inputs.

To conduct this experiment, we used the 250 original apps and
the 1,341 successfully installed apps from the previous experiment,
i.e., the total installed apps mentioned in Table 8. To measure
whether an obfuscated app runs successfully, we have modified
and instrumented the Android framework [13] to include probes
for monitoring the running components. We installed our modified
Android framework on a Nexus 5X device.

Table 8 shows the ability of obfuscation tools to produce instal-
lable and runnable apps, including the following information: the

8

A Large-Scale Empirical Study on the Effects of Code
Obfuscations on Android Apps and Anti-Malware Products ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

total number of obfuscated apps that we Examined per obfuscation
tool; the number of successfully Installed apps; the number of
runnable apps that are Order-Agnostic; and the number of runnable
apps that areOrder-Aware.
Table 8: Installable and runnable apps of each obfuscator.

Obfuscator Examined Installed Order-
Agnostic

Order-
Aware

Jarsigner 250 249 248 150

Apktool 250 249 246 154

DroidChameleon 250 249 83 31

ProGuard 250 248 237 131

Allatori 250 213 188 122

ADAM 250 84 67 46

DashO 250 49 0 0

Total Apps 1,750 1,341 1,069 634

Many obfuscation tools produce installable apps. Our results
demonstrate that almost all apps transformed by Apktool/Jarsigner,
DroidChameleon, and ProGuard have successfully installed. In
addition, only 37 apps obfuscated by Allatori have not installed
successfully. Moreover, Table 8 shows that most apps obfuscated
using ADAM or DashO are not installable. Successfully installed
apps obfuscated using ADAM all utilize the ALIGN transformation.
All obfuscated apps using the non-trivial obfuscations of ADAM
are not installable.

The runnability of apps obfuscated using our studied obfuscation
tools varies greatly depending on the tool. Table 8 shows that almost
all obfuscated apps using Jarsigner andApktool are runnable in an
order-agnostic fashion. 249 apps obfuscated using DroidChameleon
are installable; only 83 of those installable apps are order-agnostic
and runnable; and only 31 of those installable apps are order-aware
and runnable. All apps transformed by DroidChameleon using the
ENC transformation are missing a function that decrypts encrypted
strings, causing these apps to crash at runtime and raise the
error java.lang.NoClassDefFoundError. All apps that become
unrunnable after transformation by DashO raise the same error, i.e.,
java.lang.ExceptionInInitializerError. Given that DashO
is not an open-source tool, we could not investigate this problem
further. Table 8 shows that 95% of the installable apps generated
by ProGuard are runnable. Likewise, 88% of the installable apps
generated by Allatori are runnable.

Finding 9: The percentage of obfuscated apps that are both
installable and runnable in an order-aware fashion with respect to
component behaviors varies from 0%-62%. These results suggest a
significant need for improving obfuscation tools so that applying
their transformations retain an app’s original behavior.

6 DISCUSSION
For anti-malware product vendors, our study suggests several areas
for which anti-malware products in general can be significantly im-
proved. Recall that overall on our obfuscated dataset, anti-malware
products experienced a 20% decrease in their detection rate of mali-
cious apps compared to the original dataset (Finding 1). In particular,
transformations that mainly involved identifier-name manipulation
(i.e., MAN, ENC_IDR, and CF_ENC_IDR) substantially affected
obfuscation tools (Findings 3 and 5). Manifest-file transformations
(i.e., MAN) that simply involve addition of permissions that are not
necessarily used or fake component capabilities resulted in a 28%
decrease, on average, for the top-performing anti-malware products

Figure 6: Anti-malware detection, installability, and
runnability with respect to obfuscators
(Finding 3). Overall, these results indicate that anti-malware
product vendors would significantly benefit from performing a
deeper analysis into the code of an app, potentially focusing on
the security-sensitive code used by apps through static or dynamic
analysis. The importance of performing deeper analysis is further
highlighted by (1) the fact that transformations need not necessarily
be combined to evade anti-malware products (Finding 4) and (2) this
evasion worsens for newer apps (Finding 8).

For benign-app developers, our study provides some guidance
as to how particular obfuscations may be used. Specifically, we have
found that reflection transformations tend to increase significantly
the possibility of a benign app being labeled as malicious. Therefore,
benign app developers may wish to avoid such transformations
to avoid this false labeling, and to reduce overhead exhibited by
reflection. In the general case, benign-app developers need not be
overly concerned about their apps being falsely labeled as malicious
when combining obfuscations (Finding 4), except in the case of
reflection transformations (Finding 2).

The major finding for obfuscation-tool developers is that our
study indicates that many of their transformations result in invalid,
non-installable, or unrunnable apps (Finding 9). Although some of
that burden lies on benign-app developers to ensure that obfusca-
tions they apply do not adversely affect their apps, obfuscation-tool
developers would benefit from aiding benign-app developers in the
task of ensuring their apps remain runnable after obfuscation.

We further examine the implications of the interaction between
(1) obfuscations tools’ ability to produce installable and runnable
apps and (2) the anti-malware product detection rate on malicious
apps obfuscated using those tools. Figure 6 visually depicts the
interaction between these twophenomena.Obfuscation tools that lie
on the upper-right corner of the figure are preferred tools for benign
app developers, obfuscation-tool providers, and anti-malware
vendors. These obfuscation tools reliably generate installable and
runnable apps while maintaining a high detection rate of malicious
apps for anti-malware products. In our study, no tool is above
80% for both its anti-malware detection rate and installability
and runnability after obfuscation. Consequently, significant
improvements can be made to these tools along those dimensions.

Obfuscation tools that lie on the upper-left corner of Figure 6
are tools that exhibit properties particularly useful for malware
authors. These tools reliably generate installable and runnable apps
while evading the detection of anti-malware products. ProGuard
is an example of such a tool. Although few tools appear close to the
upper-left corner of the chart, malware authors are likely to expend

9

ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Mahmoud Hammad, Joshua Garcia, and SamMalek

the extra effort needed to ensure that their obfuscations result in
installable and runnable apps.

7 THREATS TOVALIDITY
This section presents our study’s threats to external and construct
validity, and the actions we have taken to mitigate them.

External validity measures the extent to which the results of our
study canbegeneralized.One threat to external validity for our study
is whether our study’s findings can be generalized to other apps out-
side of our study. To mitigate this threat, we obtained benign and
malicious apps from diverse sources that vary across application do-
mains, in terms of app size, and originate from various time periods.

To ensure ourfindings are likely to generalize to other obfuscation
strategies and tools, we employed 29 obfuscation strategies from 7
obfuscation tools—the largest number of strategies and tools utilized
to date for a study about app obfuscation.We further obtained obfus-
cation tools that are academic, open-source, and commercial—aiding
in generalizability to these three different sources.

Another threat to external validity is our selection of anti-
malware products. To mitigate this threat, we have selected over
60 anti-malware products from VirusTotal, and focused on the
most popular and well-rated 21 products for our study, due to space
limitations. However, we make the results of our study, along with
the complete list of anti-malware products and apps, available online
[21]. The findings for the anti-malware products not discussed in
this paper are consistent with the findings in this paper.

Construct validity is concerned with whether our study’s
measurements or measurement procedures validly quantify the
constructs or concepts we intend to quantify. A threat to construct
validity is the metrics and measurement procedures we used to
quantify the ability of obfuscation tools to produce runnable apps
whose behavior before obfuscation is similar to behavior after
obfuscation. To measure these constructs, we compared the set
or sequence of running components and thrown exceptions of
apps before and after obfuscation. These measurement procedures
and associated metrics are sensible given that components are
functional units of behavior—making them a sensible means of
identifying high-level behavior—and exceptions are the main
means of identifying errors in apps whose test cases and oracles
are unavailable, which is the case for many apps on Google Play.

Another threat to construct validity is the labeling of our apps
as benign or malicious. To mitigate this threat, our dataset of benign
apps are marked as benign by over 50 anti-malware products.
Similarly, our malicious apps are obtained from repositories
containing apps manually labeled as malicious by security experts.

8 RELATEDWORK
We divide previous work related to our study into four categories:
(1) studies about similarity of a repackaged app with its original
version, (2) obfuscation strategies for PC and desktop software, (3)
obfuscation tools specifically designed for Android, and (4) studies
about the effects of obfuscation on anti-malware products. In the
remainder of this section, we discuss each of these areas of related
work and conclude the section with the key differences between
our study and the most similar related work.

Researchers have studied the similarity between original apps
and repackaged apps. Huang et al. [34] used Androguard [2], an
Android reverse-engineering framework for malware analysis, to
study the obfuscation resilience of repackaging detection algorithms.
Faruki et al. [32] compared the performance of anti-malware

products and Androguard’s code similarity with AndroSimilar [33],
their tool for detecting obfuscated apps.Wang and Rountev describe
an approach for determining which obfuscation tool was applied
to an obfuscated app [46].

A few studies have considered the application of obfuscation
strategies in the context of PC and desktop software. Collberg et
al. produced a taxonomy of transformations for obfuscation with a
focus on Java [31]. Collberg et al. [30] also implemented a tool called
SandMark for evaluating the effectiveness of code obfuscation
to protect Java-based software systems from piracy, tampering,
and reverse engineering. Christodorescu and Jha [28] evaluated
the resilience of anti-malware products against code obfuscation
applied to Visual Basic programs and proposed a semantics-aware
malware-detection algorithm in [29].

Previous work has produced a few obfuscation tools specifically
designed for Android apps. Zheng et al. [47] proposed ADAM,
a framework for obfuscating Android apps and testing them on
anti-malware products. They evaluated ADAM’s effectiveness for
evading 10 anti-malware products on 222 transformed, malicious
apps. Rastogi et al. [44] presented DroidChameleon, a tool for
obfuscating Android apps, and assessed obfuscations on six apps
from Android Malware Genome [49].

Another set of studies focused on the effects of obfuscations on
anti-malware products, without proposing new obfuscation tools.
Maiorca et al. [40] studied the effects of code obfuscated by a single
tool on 13 anti-malware products. Pomilia [43] studied the perfor-
mance of 9 anti-malware products on a dataset obfuscated using
Allatori. Morales et al. [41] studied the resilience of 4 anti-malware
products after transforming 2 viruses onWindowsMobile OS.

All the aforementioned previous work that have studied either
obfuscation tools or the effects of obfuscation strategies on
anti-malware products focus on a single obfuscation tool and a small
number of anti-malware products and apps. None of these studies
have performed a large-scale empirical study considering the
effects that occur due to the concurrent utilization of anti-malware
products, various obfuscation tools, and their supported obfuscation
strategies. None of these studies assessed these effects on benign
apps; the effects of combining obfuscation strategies; and the ability
of obfuscation tools to produce valid, installable, and runnable apps.

9 CONCLUSION
In this paper, we have evaluated the effectiveness of the top-rated
Android anti-malware products against code obfuscation. We used
a large dataset consisting of 3,000 benign apps, 3,000 malicious apps,
and 73,362 obfuscated apps. To obfuscate Android apps, we applied
29 different obfuscation strategies using 7 commercial, open-source,
andacademicobfuscation tools.Our study includes the followingkey
findings: (1) all anti-malware products succumb to code obfuscation;
(2) most products are susceptible to trivial transformations, such as
simple changes to theAndroidmanifest file; (3) the detection rates of
anti-malware products depend not only on the obfuscation strategy
applied but also on the leveraged obfuscation tool; (4) anti-malware
products are slow to adopt signatures of malicious apps; and (5)
code obfuscation to a significant extent results in apps that do not
exhibit the same behavior as their original versions. Based on our
overall findings, we have provided guidance and recommendations
for improving anti-malware products and obfuscation tools. To that
end, Our study results, including the framework that we developed
to conduct this study, are available publicly online [21].

10

A Large-Scale Empirical Study on the Effects of Code
Obfuscations on Android Apps and Anti-Malware Products ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

10 ACKNOWLEDGMENTS
This work was supported in part by awards CCF-1252644, CNS-
1629771, and CCF-1618132 from the National Science Foundation,
HSHQDC-14-C-B0040 from the Department of Homeland Security,
and FA95501610030 from the Air Force Office of Scientific Research.

REFERENCES
[1] Apktool. https://ibotpeaches.github.io/Apktool/. (2010).
[2] Androguard: Reverse engineering and malware analysis of Android apps by

BlackHat. https://github.com/androguard. (2011).
[3] Allatori Obfuscator. http://www.allatori.com/. (January 2012).
[4] VirusTotal-Free virus, malware and URL scanner. https://www.virustotal.com/en.

(2012).
[5] VirusShare. http://virusshare.com/. (August 2013).
[6] Contagio Malware Repository. http://contagiodump.blogspot.it. (2015).
[7] Brain Test Lookout Report. https://blog.lookout.com/blog/2016/01/06/

brain-test-re-emerges/. (2016).
[8] DressCode Android malware. http://blog.checkpoint.com/2016/08/31/

dresscode-android-malware-discovered-on-google-play/. (2016).
[9] Kaspersky Security Bulletin. https://kasperskycontenthub.com/securelist/files/

2016/12/Kaspersky_Security_Bulletin_2016_Review_ENG.pdf. (2016).
[10] McAfee mobile threats report. https://www.mcafee.com/us/resources/reports/

rp-mobile-threat-report-2016.pdf. (2016).
[11] Smartphone OS Market Share, 2017 Q1. International Data Corporation.

http://www.idc.com/promo/smartphone-market-share/os. (2016).
[12] VikingHorde Android malware. http://blog.checkpoint.com/2016/05/09/

viking-horde-a-new-type-of-android-malware-on-google-play/. (2016).
[13] Android Open Source Project. https://source.android.com/. (July 2017).
[14] Android Studio. https://developer.android.com/studio/build/shrink-code.html.

(2017).
[15] DashO. https://www.preemptive.com/. (2017).
[16] Dex2jar: Tools to work with android. dex and java. class files. https:

//github.com/pxb1988/dex2jar. (2017).
[17] DexGuard. https://www.guardsquare.com/en. (2017).
[18] FalseGuide Android malware. http://blog.checkpoint.com/2017/04/24/

falaseguide-misleads-users-googleplay/. (2017).
[19] Google Play App Store. https://play.google.com/store?hl=en. (2017).
[20] jarsigner - JAR Signing and Verification Tool. https://docs.oracle.com/javase/

6/docs/technotes/tools/windows/jarsigner.html. (2017).
[21] Obfuscation Study Framework. http://www.ics.uci.edu/~seal/projects/

obfuscation/index.html. (August 2017).
[22] ProGuard. https://www.guardsquare.com/en/proguard. (2017).
[23] Smali/Backsmali. https://github.com/JesusFreke/smali. (2017).
[24] UI/Application Exerciser Monkey. https://developer.android.com/studio/test/

monkey.html. (August 2017).
[25] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2015. Are

your training datasets yet relevant. In International Symposium on Engineering
Secure Software and Systems. Springer, Milan, Italy, 51–67.

[26] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.
Androzoo: Collecting millions of android apps for the research community. In
IEEE/ACM 13thWorking Conference on Mining Software Repositories (MSR). IEEE,
Austin, Texas, 468–471.

[27] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket. In Proceeding of Network and Distributed System Security
Symposium. San Diego, California.

[28] Mihai Christodorescu and Somesh Jha. 2004. Testing malware detectors.
International Symposium on Software Testing and Analysis (ISSTA’04) (July 2004).

[29] Mihai Christodorescu, Somesh Jha, Sanjit A Seshia, Dawn Song, and Randal E
Bryant. 2005. Semantics-aware malware detection. In IEEE Symposium on Security
and Privacy. IEEE, Oakland, CA, 32–46.

[30] Christian Collberg, GR Myles, and Andrew Huntwork. 2003. Sandmark-a tool
for software protection research. IEEE security & privacy 99, 4 (2003), 40–49.

[31] Christian Collberg, Clark Thomborson, and Douglas Low. 1997. A taxonomy of
obfuscating transformations. Technical Report TR148. Department of Computer
Science, The University of Auckland, New Zealand.

[32] Parvez Faruki, AmmarBharmal, Vijay Laxmi,Manoj SinghGaur,MauroConti, and
Muttukrishnan Rajarajan. 2014. Evaluation of android anti-malware techniques
against dalvik bytecode obfuscation. In International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom). IEEE, Beijing, China,
414–421.

[33] Parvez Faruki, Vijay Laxmi, Ammar Bharmal, Manoj Singh Gaur, and Vijay
Ganmoor. 2015. AndroSimilar: Robust signature for detecting variants of Android
malware. Journal of Information Security and Applications 22 (June 2015), 66–80.

[34] Heqing Huang, Sencun Zhu, Peng Liu, and Dinghao Wu. 2013. A framework
for evaluating mobile app repackaging detection algorithms. In International
Conference on Trust and Trustworthy Computing. Springer, London, UK, 169–186.

[35] Li Li, TegawendéFrançoisDAssiseBissyande,MikePapadakis, SiegfriedRasthofer,
Alexandre Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon. 2016. Static

analysis of android apps: A systematic literature review. Technical Report. SnT.
[36] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Haipeng Cai, David

Lo, and Yves Le Traon. 2017. Automatically locating malicious packages in
piggybacked android apps. In Proceedings of the 4th International Conference on
Mobile Software Engineering and Systems (MOBILESoft ’17). IEEE Press, Buenos
Aires, Argentina, 170–174.

[37] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David
Lo, and Lorenzo Cavallaro. 2017. Understanding android app piggybacking: A
systematic study of malicious code grafting. IEEE Transactions on Information
Forensics and Security 12, 6 (June 2017), 1269–1284.

[38] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David
Lo, and Lorenzo Cavallaro. 2017. Understanding Android app piggybacking.
In Proceedings of the 39th International Conference on Software Engineering
Companion. IEEE Press, Buenos Aires, Argentina, 359–361.

[39] Federico Maggi, Andrea Valdi, and Stefano Zanero. 2013. AndroTotal: a flexible,
scalable toolbox and service for testing mobile malware detectors. In Proceedings
of the Third ACM workshop on Security and privacy in smartphones & mobile
devices. ACM, Berlin, Germany, 49–54.

[40] Davide Maiorca, Davide Ariu, Igino Corona, Marco Aresu, and Giorgio Giacinto.
2015. Stealth attacks: An extended insight into the obfuscation effects on android
malware. Computers & Security 51 (March 2015), 16–31.

[41] Jose Andre Morales, Peter J Clarke, Yi Deng, and BMGolam Kibria. 2006. Testing
and evaluating virus detectors for handheld devices. Journal in Computer Virology
2, 2 (2006), 135–147.

[42] Damien Octeau, Somesh Jha, and Patrick McDaniel. 2012. Retargeting Android
applications to Java bytecode. In International Symposium on the Foundations of
Software Engineering. ACM, Cary, North Carolina, 6.

[43] M. Pomilia. A Study on Obfuscation Techniques for Android Malware. (2016).
http://www.dis.uniroma1.it/~midlab

[44] Vaibhav Rastogi, Yan Chen, and Xuxian Jiang. 2014. Catch me if you can: Eval-
uating android anti-malware against transformation attacks. IEEE Transactions
on Information Forensics and Security 9, 1 (2014), 99–108.

[45] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 1999. Soot - a Java Bytecode Optimization Framework. In Pro-
ceedingsof the1999Conferenceof theCentre forAdvancedStudies onCollaborativeRe-
search (CASCON ’99). IBM Press. http://dl.acm.org/citation.cfm?id=781995.782008

[46] YanWangandAtanasRountev. 2017.WhoChangedYou?Obfuscator Identification
for Android. (May 2017).

[47] Min Zheng, Patrick PC Lee, and John CS Lui. 2012. ADAM: an automatic and
extensible platform to stress test android anti-virus systems. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer, Heraklion, Crete, Greece, 82–101.

[48] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong Zou. 2013. Fast,
scalable detection of piggybacked mobile applications. In Proceedings of the third
ACM conference on Data and application security and privacy. ACM, San Antonio,
TX, 185–196.

[49] Yajin Zhou and Xuxian Jiang. 2012. Dissecting android malware: Characterization
and evolution. In IEEE Symposium on Security and Privacy. IEEE, San Francisco,
California, 95–109.

11

