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Abstract

Next-Generation Sequencing (NGS) is very helpful for conducting DeoxyriboNucleic Acid (DNA) 
Sequencing. DNA sequencing is the process for determining the order (sequence) of the main chemical 
bases in the DNA. Analyzing human DNA sequencing is important for determining the possibility that a 
person will develop certain diseases, and/or the ability to respond to medication. However, the NGS 
process is a complicated and resource-hungry technical process. To solve this dilemma, the majority of 
NGS software systems are deployed as cloud-based services distributed over cloud-based platforms. 
Cloud-based platforms provide promising solutions for the computationally intensive tasks required by 
the NGS data analysis. This work provides a comprehensive investigation of cloud-based NGS data 
analysis and alignment tools, both the commercial and the open-source tools. We also discuss in detail the 
main features and setup requirements for each tool, and then compare and contrast between them. Moreover, 
we extensively analyze and classify the studied NGS data analysis and alignment tools to help NGS 
biomedical researchers and clinicians in finding appropriate tools for their work, while understanding the 
similarities and the differences between them.
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1. Introduction

DeoxyriboNucleic Acid (DNA) is a nucleic acid that contains all of the genetic instruction for an 
organism. Each molecule of DNA contains a chemical base which could be one of four types: adenine (A), 
cytosine (C), thymine (T), and guanine (G). These chemical

bases or letters are the main building blocks of the DNA. A person has about 3 billion pairs of these  letters, 
with the exact order or sequence being called genomic sequence. DNA sequencing is the process that 
enables scientists to read the exact order or sequence of all letters that make up the complete set of 
DNA, the genome. Thereafter, the DNA sequence is compared to a standardized code to identify the 
variance between the two sets of letters.

There are many benefits of DNA sequencing including determining the possibility of a person for 
developing certain diseases such as cancer, heart disease, or type II diabetes. It also can determine
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the ability of a person to respond to certain medications, a technique known as pharmacogenomics. 
Moreover, some genomic disorders provide an indication that a person may develop rare cases of disease 
such as Huntington disease (a progressive brain disorder). The Next-Generation Sequencing (NGS) is

15 defined as a massively parallelized sequencing technology that produces high-throughput DNA reading 
sequencing at a comparatively minimal cost [1]. NGS is considered a cutting-edge technologies in biological 
and biomedical research [2] [3].

NGS differs from Sanger sequencing, which is also called first-generation sequencing [4], in sequencing 
volume, in cost, in the velocity of sequencing, and in the amount of DNA data produced [5]. Compared

20  with the third-generation sequencing techniques, NGS also differs [6] in many characteristics as discussed  in 
[7, 8, 9, 10]. As presented in [11], Single-Molecule Sequencing (SMS), simple divergence from previous 
technologies, enabling a single molecule  sequencing,  and  real-time  sequencing  are  all  characterizing as 
third-generation sequencing platforms. NGS technologies are evolved in clinical tests [12] and in 
revolutionary innovations to genomic studies [13].  Recently, NGS technologies have become routine 
procedures

25 in Biotechnology research. DNA sequencing data analysis is a core procedure of the diagnostic test [14]. 
NGS provides considerable low-cost alternatives for several applications [15].

Advances in NGS technologies have resulted in an unprecedented proliferation of genomic sequence 
data. Therefore, several NGS data-related challenges are presented, especially in analytics and storage [16]. 
Therefore, to enhance the performance of the NGS tasks, the majority of NGS software systems are 
deployed as cloud-based services distributed over cloud-based platforms. Cloud computing is an emerging 
technology that provides a different infrastructure for tackling computational challenges in NGS data 
analysis [17, 18, 19]. Generally, the cloud computing service models are classified into three types: 
Platform as a Service (PaaS), Software as a Service (SaaS), and Infrastructure as a Service (IaaS) [20], 
[21]. In addition to these models, the bioinformatic cloud services that are mentioned in [4], [22], [23], 
and [24] added another model to the three models, called Data as a Service known (DaaS). Moreover, 
many studies also divide the types of the cloud into three main categories (private, public, and hybrid) 
[25]. In this paper, we extended our preliminary work in [26] and we have studied 47 cloud-based 
tools that are widely used in NGS data analysis, instead of only 20 NGS tools that have been studied 
elsewhere [26]. In addition, we also included 13 open-source and cloud-based NGS alignment tools 
that are widely used in the NGS data analysis. Moreover, in this paper, we described the functionality, 
features, and setup requirements for each NGS and alignment tool. We present a comparison between 
these tools in order to assist clinicians and researchers to choose the appropriate tools according to their 
working environments. To the best of our knowledge, this study is the first comprehensive study that 
investigates the widely used commercial and open-source cloud-based NGS and alignment tools.

45 The remainder of the paper includes the following sections: in Section 2, we discuss research efforts 
related to our work. Then, in Section 3, we present our methodology for conducting this study. In Section 
4, we discuss the open, commercial, and alignment tools operating on various cloud services. Finally, in 
Section 6, we conclude the paper and suggest future directions.

2. Related Work

50 In this section, we present some of the previous works that have focused on studying NGS platforms 
and tools. We show the works that have investigated NGS platforms. Then, we highlight studies that 
have introduced the NGS data as a big data domain, and we refer to the studies that utilized cloud 
computing technology in NGS. At the end of this section, we introduce other studies that provide 
overviews of NGS tools in the cloud, and we discuss the shortcomings in these studies that motivated 
us in this work.

55 Recently, many Next-generation Sequencing platforms have  emerged [13, 3] such as  ABI SOLiD, 
Illumina GA, and Roche 454. However, there are great needs for more NGS tools, as stated in [5]. Till now, 
NGS technologies have been successfully applied to several applications, such as RNA-sequencing
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[27], ChIP-sequencing [28], whole human genome sequencing [29], and genome-wide structural variation 
[30]. Many studies have evaluated and investigated NGS platforms in several applications [31], [32], [33], 
[34] [13]. For example, in [32], Loman et al. evaluated the performance of three different NGS platforms 
which are MiSeq (from Illumina), 454 GS Junior (from Roche), and Ion Torrent PGM (from Life 
Technologies). They compared these platforms using several criteria including quality, the performance of 
the platforms, read length, read error rate, and completeness. Based on many previous studies, Illumina 
platforms are the most used and well-known platforms in the market [35, 36, 37].

65 The big-data generated from NGS technologies causes challenges with storing, analyzing, and managing 
this data [17]. Elazhary [20] presented the opportunities and challenges of using cloud computing in 
processing Big Data. Elazhary [20] also presented computational biology applications as targeted fields. The 
size and complexity of NGS data have grown rapidly, and the extension of computing capabilities is 
becoming essential [17]. Cloud computing is considered as a replacement of the current on-premises 

solutions to address several issues in NGS data, as shown in [17, 23].  The importance of cloud computing 
to handle NGS data analysis is discussed in many works [16], [4], [38]. Dai et al. [22] reviewed cloud-based 
services in the bioinformatics domain, and they classified them into DaaS, PaaS, SaaS, and IaaS.  Then they 
presented their perspectives on utilizing cloud computing in the bioinformatics arena. In their review, they 
did not focus on the NGS, and they reviewed some of the cloud-based resources in bioinformatics.

75 Several efforts were taken to study and provide overviews of NGS analysis tools. In [16], Celesti et 
al. provided a taxonomy of the NGS cloud-based tools according to cloud service levels. They presented 
a taxonomic tree of cloud-based systems by showing NGS applications. Thakur et al. [18] also presented 
cloud-based computing in biological systems, focusing on genomic informatics, comparative genomics, 
metagenomics,  and SNP detection.  Moreover,  Zhao et al.  [23] reviewed a part of cloud-based tools 

and systems used for NGS data analysis. They discussed the practical limitations and hurdles that can 
be found in cloud computing, focusing on security and data transfer. They also showed bioinformatics 
platforms and cloud-based services along with some applications. They classified these platforms into 
commercial systems, commercial or open bioinformatics platforms, and open-source tools.   Geo et al. 
[4] presented an overview of Cloud Computing and they showed how cloud-computing services provide 
support for NGS data analysis. They provided a summary of some cloud-based resources used for NGS data 
analysis. In addition to these works, Kwon et al. also used two  types to classify the tools for NGS i.e., 
commercial services and open-source tools [17].

None in previous works have addressed features and setup requirements for the NGS cloud-based 
tools. From investigating the previous works, we find it is essential to develop a study that addresses 
cloud-based tools for NGS analysis. Our study provides a comparison between the tools which help 
clinicians, scientists, and researchers to choose the proper tool according to working environments. To 
the best of our knowledge, this study is the first comprehensive study that investigates the commercial 
and open-source cloud-based NGS and alignment tools, and provides up-to-date investigation of them. 
Sixty NGS tools are reported in this study, divided as 41 open-source NGS tools, 6 commercial NGS 
tools, and 13 NGS alignment tools.

3. Methodology

In this section, we describe our methodology for collecting NGS data analysis tools and NGS alignment 
tools. We focus only on cloud-based NGS tools, due to their capability for handling big data generated 
from NGS technologies. We also focus on NGS alignment tools that also can be deployed on cloud 

services. Then, we describe the main features that biomedical researchers and clinicians consider for 
selecting NGS and alignment tools. Although these tools are cloud-based, most of them offer a desktop 
version for users to download and utilize.

105 110
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3.1. Selected NGS Tools
We include widely used cloud-based NGS tools collected from previous studies [16], [4], [17], and 

[23]. The NGS tools that we have excluded are either non-cloud-based NGS tools such as the BioPerl 
tool [39] or cloud-based NGS tools but not active or supported anymore such as the Roundup tool [40] 
and CloudTSS tool [41]. As a result of these inclusion/exclusion criteria, we obtained 60 cloud-based 
NGS data analysis and alignment tools, divided into three categories as follows: 41 open-source NGS 
tools, 6 commercial NGS tools, and 13 NGS alignment tools.

Due to space limitations and to ensure readability, we list all of the included open-source NGS tools, 
commercial NGS tools, and NGS alignment tools in Table 3.1. However, we have made the description 
of all of these tools available online [42].

Open source NGS Commercial NGS Alignment NGS
Tool Tool Tool Tool Tool
Galaxy [43] [44] CloudBurst [45] Crossbow [46] BaseSpace [47] BWA [48]
SeqMapReduce [49] DIYA [50] GATK [51] [52] Bina [53] SAMtools [54]
Myrna [55] Ergatis [56] CloVR [57] [58] [58] [59] DNAnexus [60] MAQ [61] [62]
Cloudaligner [63] RAPSearch2 [64] Jnomics [65] [66] LifeScope [67] BLAT [68] [69]
PeakRanger [70] ArrayExpressHTS [71] SIMPLEX [72] GeneSifter [73] BLAST [74] [75] [76]
Rainbow [77] MEGAN [78] Stormbow [79] SevenBridges [80] MUMmer GPU 2.0 [81]

BioPig [82] Eoulsan [83] Atlas2 [84] MUMmer [85] [86] [87]
[88]

TREAT [89] Cloud BioLinux [90] HugeSeq [91] SHRiMP [92] [93]
VAT [94] FX [95] YunBe [96] Bowtie [97]
CloudMan [98] [99] Hadoop-BAM [100] SparkSeq [101] Bowtie2 [102]
BioVLAB-MMIA-NGS
[103]

Contrail [104] Mercury [105] SEAL [106]

STORMSeq [107] SURPI [108] SeqPig [109] TopHat [110]

SNP2Structure [111] Halvade [112] CLUSTOM-CLOUD
[113]

HISAT2 [114]

MG-RAST [115] [116] MC-GenomeKey [117]

Table 1:  All of the included NGS 
tools

3.2. Descriptive Features
To describe and compare between the included NGS tools, we have selected a set of features that 

are crucial for identifying cloud-based NGS data analysis tools. These features are also important for 
biomedical researchers and clinicians to select NGS tools. For each category of NGS tool, recall that in 
Section 3.1, we have identified a set of features related to that category, as shown in Figure 1. We 
extracted these features in several ways, including studying the research paper for each tool, exploring 
the tools’ websites, studying tools’ manuals, and utilizing the OMICtools [118].  OMICtools is a website 
that contains a manually curated metadatabase of omic tools.

3.2.1. Features for open-source NGS tools
For this category, we have selected nine important features. Next, we describe these features in 

more detail:

1. Operating  System:  describes the operating system the desktop version of the open-source NGS
125 tool requires to operate.

2. NGS technology: displays the NGS technology platform(s) or the hardware equipment the NGS 
tool is compatible with.

3. Cloud  Service  Model  (CSM): shows the model of the cloud service for the NGS tool.

4. Cloud  Type:  displays the type of cloud service for the NGS tool (private, public, or hybrid).
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Figure 1: The descriptive features for all cloud-based NGS and alignment tools
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5. Input  File  Format:  displays the format for the accepted input file to the NGS tool.
6. Output  File  Format:  displays the format for the output file generated by the NGS tool.
7. Release  year:  shows the released year for the NGS tool.
8. Interface: displays the type of the interface that the user can use to interact with the NGS tool. 

The possible interfaces for the NGS tools are: Web User Interface (WUI), Command Line Interface 
(CLI), Graphical User Interface (GUI), and Application Programming Interface (API).

9. Pipeline: this feature shows if the tool uses a pipeline technique or not. The Pipeline is defined 
as the steps used for analyzing the data when the output from one step is an input to the next 
step.

3.2.2. Features for commercial NGS tools
Many features that we have identified for open source NGS tools cannot be obtained for commercial 

tools such as the  Cloud  Service  Model  and  Cloud  Type  features.  Therefore, we ended up with only 
several features for this category.  These features are:  (1)  Operating  System, (2)  NGS  technology, (3)  
Input File  Format, (4)  Output  File  Format, (5)  Release  year, and (6)  Interface.  The description 
of these features are the same as in the open-source NGS tools.

3.2.3. Features for NGS Alignment tools
For this category, we have identified nine features.  These nine features are  Operating  System,  NGS  

technology,  Cloud  Service  Model  (CSM),  Input  File  Format,  Output  File  Format,  Release  year,  
Interface,  Programming  Language  (PL), and  Algorithm.  The description of the first seven features are as 
described in the open-source NGS tools, whereas the last two are described as follows:

1. Programming  Language  (PL):  displays  the  programming  language  used  to  develop  the  NGS 
alignment tool.

2. Algorithm:  displays the NGS alignment algorithm the tool performs to analyze and align the data.

4. Results

This section presents the results of our methodology for extracting the features of the commonly 
used NGS and alignment tools.

155
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In this work, we investigated 41 open-source NGS tools obtained from applying inclusion/exclusion 
criteria shown in the Methodology section. It is difficult to fit all tools in one table, so we divided the NGS 
tools into dual five year time spans based on the tool’s published year.  Table 2 covers the tools published 
in the years from 2005 to 2012, while Table 3 shows the tools published in the years from 2013 to 2017. 
Both tables 2 and 3 depict the nine features, described in Section 3.2.1, of the 41 selected open-source NGS 
tools. As shown in Tables 2 and 3, all of the desktop versions of the open-source tools work with the 
Linux/Unix operating system. However, eight of them work with Windows and eight of them work with the 
MacOS operating system.

Regarding the NGS technology used, most of them are compatible with Illumina technology. In 
terms of the utilized  Cloud  Service  Model, most of the tools are deployed as Software as a Service 
(SaaS). However, six of them are Infrastructure as a Service (IaaS) and eight of them are Platform as a 
Service (PaaS). As shown in the table, 30 of the selected NGS tools are hosted on the Amazon web 
services as a public cloud type.

Tables 2 and 3 show that most of the open-source NGS tools accept FASTA and FASTQ file format 
as input files. However, they generate files with different formats as an output. The table also shows that 
most of the tools have been released between the years 2009 and 2012. Thereafter, fewer tools have 
been developed.

Regarding the interface of the open-source NGS tools, most of them interact with the user via a 
Command Line Interface (CLI) in which the user needs to become familiar with the commands for that 
tool. Finally, as the table shows, most of the tools use pipelines to analyze the NGS data.

ID NGS Tool Operating
System

NGS tech-
nology

CSM Cloud
Type

Input
File

Output
File

Release
year

Inter-
face

Pipe
line

1 Galaxy Windows, 
Unix,
Linux

- PasS - Various * Various * 2005 WI ✓

2 Cloud- 
Burst

Unix, 
Linux

Illumina, 
Solexa

SaaS Public 
(Ama- 
zon
EC2)

FASTA BED 2009 CLI  

3 Crossbow Unix, 
Linux

Illumina SaaS Public 
(Ama- 
zon
EC2)

FASTQ Stream  
of SNP 
calls

2009 CLI ✓

4 Seq-Map- 
Reduce

Unix, 
Linux

Illumina, 
Solexa

SaaS Public 
(Ama- 
zon
EC2)

- ELAND 2009 WI  

5 DIYA Unix, 
Linux

Roche/454 
Sequencing 
GS-FLX
instruments

IaaS - FASTA Various * 2009 CLI ✓

6 GATK Unix, 
Linux, 
MacOS

Illumina/ 
HiSeq , 
Biosystems 
SOLiD
System,
454 Life
Sciences

SaaS, 
IaaS

- BAM, 
SAM

VCF 2010,
2011

CLI ✓

7 Myrna Unix, 
Linux

Illumina 
Genome 
Analyzer II

SaaS Public 
(Ama- 
zon
EC2)

FASTQ - 2010 CLI ✓

8 ERGATIS Unix,
Linux

- IaaS - FASTA,
XML

XML 2010 CLI,
WI

✓
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9 CLOVR Windows, 
Unix, 
Linux, 
MacOS

Roche/454, 
Illumina

IaaS Public 
(Ama- 
zon 
EC2), 
DIAG
cloud

SFF, 
FASTA, 
QUAL, 
FASTQ

FASTA,
Genbank 
Flat files

2011 CLI , 
GUI

✓

10 Cloud- 
Aligner

Unix, 
Linux

Illumina 
HiSeq 2000

SaaS Public 
(Ama- 
zon
EC2)

FASTA, 
FASTQ, 
SAM

SAM, 
BED6

2011 CLI  

11 RAP-
Search2

Unix, 
Linux

- IaaS Public 
(Ama- 
zon
EC2)

FASTA XML, 
ASN.1

2011 CLI ✓

12 Jnomics Unix, 
Linux

Illumina SaaS - BAM, 
SAM, 
FASTQ,
BED

SAM 2011 CLI ✓

13 Peak- 
Ranger

Windows, 
Linux, 
MacOS

- SaaS Public 
(Ama- 
zon 
EC2)

Eland, 
Bowtie, 
SAM, 
BAM,
BED

WIG 2011 CLI  

14 Array- 
Express 
HTS

Windows, 
Unix, 
Linux,
MacOS

Illumina, 
Solexa

SaaS - FASTQ HTML 2011 CLI ✓

15 SIMPLEX Unix, 
Linux

Illumina, 
ABI SOLiD

- Public 
(Ama- 
zon 
EC2)

FASTQ, 
FASTA

Pdf, 
BAM, 
VCF, 
TSV, 
PNG,
xlsx

2012 CLI ✓

16 Eoulsan Unix, 
Linux

Illumina PaaS Public 
(Ama- 
zon
EC2)

FASTQ, 
FASTA

- 2012 CLI  

17 Atlas2 Unix, 
Linux

Roche/454, 
Illumina, 
SOLiD

SaaS Public 
(Ama- 
zon 
EC2, 
S3),
Gen- 
boree 
Work-
bench

BAM, 
FASTA

VCF, 
LFF

2012 CLI ✓

18 TREAT Unix, 
Linux

- - Public 
(Ama- 
zon
EC2)

FASTQ, 
BAM

Various * 2012 CLI ✓

19 Cloud Bio 
Linux

Windows, 
Unix, 
Linux,
MacOS

- PaaS, 
IaaS

Public 
(Ama- 
zon
EC2)

BAM - 2012 CLI ✓

20 HugeSeq Unix,Linux Illumina
HiSeq

- - FASTQ,
FASTA

VCF,
GFF

2012 CLI ✓

21 VAT Unix, 
Linux

- SaaS Public 
(Ama- 
zon
EC2)

VCF VCF 2012 CLI ✓

22 FX Unix, 
Linux

Illumina 
Genome 
Analyzer
IIx

SaaS Public 
(Ama- 
zon
EC2)

FASTQ Various * 2012 CLI ✓
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23 YunBe Unix, 
Linux

BGI SaaS Public 
(Ama- 
zon 
EC2),
BGI

- - 2012 CLI  

24 CloudMan Unix, 
Linux

- PaaS Public 
Amazon 
EC2,
private 
(Open- 
Stack 
and 
Open-
Nebula)

FASTQ - 2012 CLI
, WI

✓

25 Hadoop- 
BAM

Unix, 
Linux

- SaaS - BAM, 
SAM, 
FASTQ, 
FASTA, 
QSEQ, 
BCF, VCF

BAM, 
SAM, 
FASTQ, 
FASTA, 
QSEQ, 
BCF,
VCF

2012 CLI  

Table 2: Open-source cloud-based NGS tools developed between years (2005-2012)

ID NGS Tool Operating
System

NGS tech-
nology

CSM Cloud
Type

Input
File

Output
File

Release
year

Inter-
face

Pipe
line

26 Rainbow Linux Illumina 
HiSeq 2000,
HiSeq  2500
platforms

SaaS Public 
(Ama- 
zon EC2
and S3)

BAM, 
FASTQ

SOAP, 
SNP

2013 - ✓

27 MEGAN Windows, 
Unix, 
Linux, 
MacOS

- IaaS - Text 
tab- 
u- 
lar,
XML),
RapSearch2, 
SAM,
RDP,  
NBC,   QI-
IME, CSV.

- 2013 GUI ✓

28 Stormbow Unix, 
Linux

Illumina 
HiSeq 2000

SaaS Public 
(Ama- 
zon EC2
and S3)

FASTQ, 
FASTA

BAM 2013 CLI ✓

29 BioPig Unix, 
Linux

- PaaS Public 
(Ama- 
zon
EC2)

FASTQ, 
FASTA

FASTQ, 
FASTA

2013 CLI  

30 SparkSeq Linux, 
MacOS

- - Public 
(Mi-
crosoft
Azure)

BED, 
GTF

- 2014 CLI  

31 BioVLAB- 
MMIA- 
NGS

Windows, 
Unix, 
Linux

- PaaS, 
SaaS

Public 
(Ama- 
zon
EC2)

FASTQ - 2014 CLI
, WI

✓

32 Contrail Unix,
Linux

- IaaS,
PaaS

- - - 2014 CLI ✓

33 Mercury Unix, 
Linux

Illumina 
HiSeq

- Public 
(Ama- 
zon 
EC2,
S3)

FASTQ - 2014 CLI
, WI

✓

 

 

 

Journal Pre-proof



9

34 STORMSeq Unix, 
Linux

- SaaS Public 
(Ama- 
zon 
EC2,
S3)

FASTQ, 
BAM

VCF 2014 CLI , 
GUI

✓

35 SURPI Unix, 
Linux

Illumina - Public 
(Ama- 
zon
EC2)

FASTQ - 2014 CLI ✓

36 Seqpig Unix, 
Linux

Illumina PaaS Public 
(Ama- 
zon S3, 
Elastic 
MapRe-
duce)

BAM, 
SAM, 
FASTA, 
FASTQ, 
QSEQ

BAM, 
SAM,
FastQ, 
Qseq

2014 CLI ✓

37 SNP2-
Structure

Unix, 
Linux

- SaaS Public 
(Ama- 
zon
EC2)

- PDB 2015 WI ✓

38 Halvade Unix, 
Linux

Illumina 
HiSe- 
qNA12878

- Public 
(Ama- 
zon 
EC2,
S3)

FASTQ VCF 2015 CLI ✓

39 CLUSTOM- 
CLOUD

Windows, 
Unix, 
Linux,
MacOS

Roche/454 
FLX Tita- 
nium

PaaS Public 
(Ama- 
zon
EC2)

FASTA, 
XML

FASTA 2016 CLI  

40 MG-RAST Unix, 
Linux

454 reads 
Sanger 
sequences

IaaS Public 
(Shock, 
AWE
server), 
Amazon
EC2

FASTA, 
FASTQ, 
SFF

FASTA, 
GFF3,
Gen- 
Bank

2016 WI ✓

41 MC-
Genome 
Key

Unix, 
Linux

Illumina - Public 
(Ama- 
zon, 
Google, 
Azure), 
Private 
(Open- 
Stack)

FASTQ, 
BAM

VCF 2017 CLI
, WI

✓

Table 3: Open-source cloud-based NGS tools developed in the years 2013-2017.

175

180

185

Table 4 depicts the features, described in a prior section, of the selected commercial NGS tools. As 
shown in the table, all of the desktop versions of the commercial tools work with the Linux/Unix 
operating system except one tool that works on Windows and MacOS operating systems. Regarding 
the NGS technology used, the commercial NGS tools support different NGS technologies 
(Platforms), such as the Roche 454 GS FLX sequencer and Illumina.

In addition, Table 4 shows that three of the commercial tools accept the FASTA and FASTQ file 
format  as input files. However, they produce files with different formats as an output. The table also 
shows that all of the tools have been released between years 2009 and 2012.

Regarding the interface of commercial NGS tools, all tools interact with the user via the Command Line 
Interface (CLI), except one tool which uses a Graphical User Interface (GUI). Finally, as the table 
shows, all of the tools use a pipeline to analyze the NGS data.
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ID NGS Tool Operating
System

NGS
tech- 
nology

Input
File

Output
File

Release
year

Interface Pipelin
e

1 BaseSpace Unix, Linux Illumina BCL FASTQ 2011 CLI ✓
2 Bina Windows, 

Unix, 
Linux, Mac
OS

- FASTQ csv 2012 CLI ✓

3 DNAnexus Unix, Linux - Various
*

Various
*

2009 CLI ✓

4 LifeScope Unix, Linux 5500
Genetic 
Analyz-
ers

XSQ BAM, 
GFF3

2012 CLI, 
GUI

✓

5 GeneSifter Unix, Linux Roche
454 GS 
FLX Se-
quencer

BAM, 
VCF, 
FASTA

xml 2010 GUI ✓

6 SevenBridges Unix, Linux - FASTA - 2009 CLI, WI, 
API

✓

Table 4:  Commercial cloud-based NGS Tools.

190

195

200

Table 5 shows the 10 features, described in a prior section, of the 13 selected open-source NGS 
alignment tools. As shown in the table, all of the desktop versions of the open-source alignment tools 
work with the Linux/Unix operating system. However, four of them work with Windows, eight of them 
work with MacOS, and only one of them, which is the Bowtie NGS alignment tool [97], works with the 

Solaris operating system. In terms of the NGS technology used, all of the NGS alignment tools are 
compatible with the Illumina technology.  Regarding the utilized  Cloud  Service  Model, most of the 
tools are deployed as Infrastructure as a Service except one tool, the SEAL [106], which was deployed 

as a Software as a Service.
Table 5 also shows that all of the open-source alignment tools accept FASTA or FASTQ file format 

as input files. However, they generate files with different formats as an output. As shown in the table, 
some of the alignment tools have been available for some time. For example, the first version of the 
Blast NGS alignment tool was released in 1990. Similarly, the MUMmer NGS alignment tool was 
released in 1999.

Regarding the interface of the open-source alignment tools, all of them interact with the user via 
a Command Line Interface (CLI) except one tool which uses the Web User Interface (WUI). 
Additionally, Table 5 shows that all of the tools do not use a pipeline to analyze the NGS data.  
Moreover, the table shows that all of the open-source alignment tools are developed using C and C++ 
programming languages. However, they used different algorithms to align the NGS data.
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ID NGS
Tool

OS NGS
technolo
gy

CSM Input
File

Output
File

Release
Year

Interface PL Algo.

1 BWA Unix, 
Linux

Illumina, 
Ox-
ford 
Nanopore, 
SOLiD, 
454,
Sanger 
reads, 
PacBio
sequencer

IaaS FASTA, 
FASTQ

SAM 2010 CLI C,
Java 
script

BWA-
backtrack, 
BWA-SW, 
BWAMEM

2 SAMtools Unix, 
Linux

Illumina 
GA, AB 
SOLiD

IaaS SAM, 
BAM, 
CRAM,
FASTA

SAM, 
BAM, 
VCF,
CRAM

2009 CLI C,
Perl

-

3 MAQ Windows, 
Unix, 
Linux, 
Mac OS

Illumina- 
Solexa
1G Ge-
netic
Analyzer

IaaS FASTA FASTQ
, SNP, 
LOG

2008 CLI C, 
C++,

Perl

-

4 BLAT Unix, 
Linux

- IaaS FASTA HTML, 
PSL

2002 WUI, 
CLI

- Graph and 
Dynamic
algorithm

5 Blast Windows, 
Linux,
MacOS

- IaaS FASTA XML, 
ASN.1

1990 WUI C, 
C++

-

6 MUMme 
GPU

2.0

r Unix, 
Linux

Illumina,
454 Life 
Sciences, 
Applied 
Biosys-
tems

IaaS - FIG, 
PDF

2009 CLI C++ -

7 MUMmer Unix,Linux 
MacOS

, - IaaS FASTA FIG, 
PDF

1999,
2004,
2003,
2002

CLI C, 
C++,
Java, 
Perl, 
Python,
Ruby

Suffix-Tree

8 SHRiMP Unix,Linux 
MacOS

, Illumina- 
Solexa, 
Roche/454, 
AB
SOLiD

IaaS FASTA, 
FASTQ

SAM 2009,
2011

CLI C 
C++

Smith- 
Waterman

9 Bowtie Windows, 
MacOS, 
Linux,
Solaris.

Illumina IaaS FASTA, 
FASTQ

SAM, 
FAI

2009 CLI C, 
C++

Blockwise

10 Bowtie2 Unix, 
Linux, 
MacOS

Illumina, 
HiSeq 
2000,
Roche/454

- FASTA, 
FASTQ

SAM
,SOAP

2012 CLI C 
C++

Dynamic- 
Programming

11 SEAL Unix, 
Linux

Illumina SaaS FASTQ, 
PRQ,
QSeq

SAM 2011 CLI - -

12 TopHat Unix, 
Linux, 
MacOS

Illumina 
SOLiD

- FASTA, 
FASTQ

SAM, 
BAM

2009 CLI C++,
Python

TopHat- 
Fusion, 
Indel-
finding

13 HISAT2 Windows, 
Unix, 
Linux, 
MacOS

- - - SAM 2015 CLI C, 
C++,
Perl, 
Python, 
Bash

Two-pass

Table 5:  Cloud-based NGS Alignment Tools.
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5. Discussion

This section discusses the main findings of our results regarding cloud-based NGS analysis and 
alignment tools.

For our first finding 1, as shown in Section 4, very few of the NGS tools are cross-platform tools, 
i.e., tools that work on different operating systems. The majority of the desktop versions of the NGS 
tools run on the Linux/Unix operating system. Such a restriction limits the number of users who can 
use these tools, since it requires special skills that most biomedical users lack. Therefore, we highly 
recommend developers of NGS tools to develop cross-platform tools to increase the usage of their 
tools.

Our second finding 2 is similar to the previous finding, i.e., most of the NGS tools interact with users via 
Command Line Interface (CLI). In general, users face many difficulties interacting with CLI interfaces

215 including (1) they need to memorize various commands and they need to know how to use them; (2) in  some 
cases, CLI interfaces require users to write scripts to execute various tasks; (3) comparing to the Web 
interfaces, CLI interfaces require more effort to execute the same task, especially from biomedical users.

Figure 2 depicts the number of open-source NGS tools per year. The figure shows an important finding 

of our research, that is, most of the open-source NGS tools were developed between the years 2009 
and 2012  and there are no recent tools developed in the past five years, Finding 3.  This finding shows an 
industrial gap in developing NGS tools using recent technologies. Therefore, we recommend NGS tool 
developers to either develop new NGS tools, or upgrade existing NGS tools by adapting emerging 
technologies.

225

230

235

Although most of the tools accept FASTA and FASTAQ file format as input to their tools, other 
tools accept other formats such as XML and SSF formats. In addition, they generate files with different 
formats as output files. Therefore, there is no standard input format for NGS tools which reduces the 
compatibility, portability, interoperability, and integration between the NGS tools, Finding 4. As a 
recommendation, NGS tools need to standardize the format of their input and output files.

6. Conclusion

In this study, we investigated the most used cloud-based Next-Generation Sequencing (NGS) data 
analysis and alignment tools. We studied 60 tools divided into three categories: 41 open-source NGS tools, 
6 commercial NGS tools, and 13 NGS alignment tools. For these cloud-based tools, we extracted and 
studied crucial features that biomedical researchers and clinicians consider for selecting the appropriate 
NGS tools according to the needs of their works. We present many findings that provide insights and 
recommendations for developers of NGS tools to improve them. In the future, we are planning to conduct 
an empirical study to measure various Quality of Service (QoS) attributes of these tools such as their 
performance, efficiency, security, power consumption, and reliability.

Finding 1: NGS tools are not cross-platform tools. The majority of them work on the Linux/Unix 
operating system.

Finding 2: Most of the NGS tools interact with users via Command Line Interface (CLI)

Finding 3: Very few NGS tools have been developed during the last 5 years.

Finding 4: There is no standard input/output file format for NGS tools. Hence, reducing the 
compatibility, portability, interoperability, and integration between the tools.
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Figure 2: Number of open-source NGS tools per year.
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