Institute for Software Research
ICS2 221

University of California, Irvine
Irvine, CA 92697-3455
www.isr.uci.edu

Institute for Software Research

University of California, Irvine

Lightweight, Obfuscation-Resilient Detection and
Family Identification of Android Malware

Joshua Garcia
University of California, Irvine
joshua.garcia@uci.edu

Mahmoud Hammad
University of California, Irvine
hammadm@uci.edu

Sam Malek
University of California, Irvine
malek@uci.edu

January 2016
ISR Technical Report # UCI-ISR-16-2

isr.uci.edu/publications

Lightweight, Obfuscation-Resilient Detection and
Family Identification of Android Malware

Joshua Garcia, Mahmoud Hammad, and Sam Malek
Institute for Software Research, University of California, Irvine
Department of Informatics, University of California, Irvine
{joshug4, hammadm, malek} @uci.edu

Abstract—The number of Android malware apps are increas-
ing very quickly. Simply detecting and removing malware apps
is insufficient, since they can damage or alter other files, data,
or settings; install additional applications; etc. To determine
such behavior, a security engineer can significantly benefit from
identifying the specific family to which an Android malware
belongs. Additionally, techniques for detecting Android malware,
and determining their families, lack the ability to handle certain
obfuscations that aim to thwart detection. Moreover, some prior
techniques face scalability issues, preventing them from detecting
malware in a timely manner.

To address these challenges, we present a novel ma-
chine learning-based Android-malware detection and family-
identification approach, RevealDroid, that leverages a small,
simple set of selectable features—of which the simplest set of
features achieves obfuscation resiliency, efficiency, and accuracy.
This result is highly surprising, given that a wide variety of
techniques require complex program analyses (e.g., precise data-
flow analysis) or large sets of features (e.g., hundreds of thousands
of features), leading to scalability problems and lack of resilience
to obfuscation. Specifically, our selected machine-learning fea-
tures leverage categorized Android-API usage, which represent
semantics of Android apps. We assess RevealDroid’s accuracy and
obfuscation resilience on an updated dataset of malware from a
diverse set of families, including malware obfuscated using var-
ious transformations. We further compare RevealDroid against
other state-of-the-research and state-of-the-practice approaches
for malware detection and family identification. !

I. INTRODUCTION

Mobile devices have become ubiquitous, and are still
growing quickly. Among such devices, Android has become
the dominant platform and is deployed on hundreds of millions
of devices around the world. With this widespread usage,
an increasing number of malware applications (apps) have
been found on such devices and the repositories that distribute
mobile apps (e.g., Google Play). These malware increasingly
resemble their counterparts in Desktop PC environments [5], [1],
demonstrating the growing sophistication of mobile malware.
Consequently, a significant amount of effort has been expended
on producing techniques to detect Android malware.

Existing work on Android malware detection [24], [49],
[58], [28], [33], [56], [39], [46], [16], [31], [18] has focused on
distinguishing between benign and malicious apps. For example,
previous work has demonstrated how large-scale data mining,
with some program analysis, can be utilized to assess whether
an Android app is benign or malicious [18], [26], [27], [20].

ISR Technical Report UCI-ISR-16-2

Although accurately making such a distinction is an important
step towards fighting the growing prevalence of malware on
Android devices, simply declaring an app as malicious and
removing it is not enough to address the damage it may have
done once deployed [32]. Engineers that assess the impact of
a malware app must determine if other apps, files, or settings
may have been damaged or altered; whether there are any
remaining malicious or problematic services or processes that
have been compromised; if any sensitive data has been stolen
or leaked; if any unlawful or illegitimate financial charges have
been made due to the malware’s presence; etc. To make such a
determination, a security engineer can significantly benefit from
identifying the specific family to which an Android malware
belongs. The family of a malware app can be coarse-grained
(e.g., Trojan, virus, worm, spyware, etc.) or finer-grained, where
more specific families (e.g., DroidKungFu [57], DroidDream
[57], Oldboot [11], etc.) are identified. Knowledge of the family
to which an Android malware belongs can help an engineer
determine the specific steps that need to be taken to mitigate
or undo damage caused by the malware.

Complicating the detection and family identification of
Android malware are transformations that obfuscate apps in
order to evade detection and family identification by anti-
malware software [9], [17], [37]. For example, Agent. BH!tr.spy
steals information by sending emails using SMTP with TLS au-
thentication [17], thus hiding the stolen data in a cryptographic
protocol. A recent study of Android malware obfuscation has
demonstrated that simple transformations can prevent ten popu-
lar anti-malware products from detecting any of the transformed
malware samples, even though prior to the transformations those
products were able to detect those malware samples [37]. Thus,
malware detection must be designed to defeat these evasion
techniques. To achieve this goal, malware detection techniques
can utilize program analyses that focus on the key semantics and
behavior performed by a malware (i.e., behavior as represented
by control flow or data flow of a program), particularly in
its interactions with the system APIs and libraries that are
external to the app, rather than just on syntactic aspects of
its implementation (e.g., identifier name or string constants).
However, the extent to which recent Android-malware detection
techniques are resilient to modern transformation attacks is not
well-understood. Existing studies have largely applied their
techniques to malware that do not use any, or very limited,
obfuscation [41], [53], [18], [26]. These techniques use features
that are not resilient to obfuscations (e.g., features based on
control flow [41], [26] or constant strings [53], [18]).

To further reduce Android malware propagation and damage,
detection or family identification of such malware should be
scalable. Some state-of-the-art techniques run into scalability
issues and can take hours or up to an entire day to analyze even
a single app [31], [20]. Cumulatively, this delayed analysis can
allow Android apps to propagate undetected for a longer period
of time and, thus, cause more damage. Furthermore, it can
prevent users from scanning apps directly on their Android
devices, which is important given that Android markets have
relatively poor vetting processes [58], [23]. Consequently, it is
desirable to utilize features that can be extracted efficiently for
detection and family identification of Android malware apps,
even obfuscated ones.

In this paper, we introduce RevealDroid, a lightweight
machine learning-based approach for detecting malicious
Android apps and identifying their families. RevealDroid
leverages a small, simple set of selectable features and machine-
learning classifiers—of which the simplest set of features
achieves obfuscation resiliency, efficiency of analysis, and
accuracy. This result is highly surprising, given that a wide
variety of techniques require complex program analyses (e.g.,
data-flow analysis [20], [53]) or large sets of features (e.g.,
hundreds of thousands of features [18], [26]), leading to
scalability problems and lack of resilience to obfuscation. More
specifically, our selected machine-learning features leverage
categorized Android-API usage, which represent semantics of
both benign and malicious Android apps.

RevealDroid is capable of accurately detecting malicious
apps and identifying their families at above 97% for un-
transformed apps and above 94% for transformed apps, and
can do so, on average, for an app, in under 16 seconds.
RevealDroid can maintain this accuracy even for obfuscated
apps that it has never seen. We evaluate RevealDroid’s detection
and family identification accuracy by comparing its ability to
correctly identify malware and classify its family on a dataset
of over 28,000 benign apps and over 23,000 malware apps
from two different malware repositories. We further compare
RevealDroid’s detection and family-identification accuracy
against state-of-the-research approaches: Adagio [26] and
MUDFLOW [20], both of which are approaches for malware
detection; and Dendroid [41], an approach for malware-family
identification. RevealDroid has an overall greater accuracy by
about 13%-17% and mislabels 24%-30% fewer benign apps as
malicious than MUDFLOW; and RevealDroid achieves up to
25% greater accuracy than Adagio. Additionally, RevealDroid
achieves a 14%-60% higher classification rate than Dendroid.
We further demonstrate that our learning-based classifiers meet
or, in most cases, exceed the detection rate of commercial
anti-virus products.

This paper makes the following contributions:

e RevealDroid demonstrates that highly lightweight
analyses, combined with standard machine-learning
techniques, can achieve high accuracy, scalability, and
obfuscation resiliency—all at the same time.

e We construct an updated dataset of over 19,000
malware apps labeled with their 90 malware families
and assess RevealDroid’s family-identification accuracy
on that dataset. We make this updated dataset available
for researchers and practitioners [8].

e To evaluate RevealDroid’s obfuscation resiliency, we
apply several transformations to malware apps in order
to obfuscate them and assess our ability to detect and
identify families of those transformed apps. Using these
transformed apps, we compare RevealDroid’s accuracy
for detection against Adagio and MUDFLOW, and for
family identification against Dendroid.

e We assess the efficiency of RevealDroid’s feature ex-
traction and machine-learning classification. We show
that RevealDroid’s features can be more than 33-85
times faster than information-flow feature extraction—
which are features used in a variety of Android
malware detection tools [53], [20], [54]—while still
exhibiting obfuscation resiliency and accuracy. We
further demonstrate that RevealDroid can produce
classifiers much more efficiently, as compared to other
state-of-the-research tools.

The remainder of this paper is structured as follows. Section
II discusses the manner in which we utilize machine learning as
a foundation for RevealDroid, and compares the use of machine
learning to signature-based methods for malware detection.
Section III introduces RevealDroid and its design. Section IV
covers our evaluation design, including the research questions
we study; Section V discusses the evaluation results for each
research question, and RevealDroid’s limitations. Section VI
covers work related to RevealDroid. Section VII concludes the
paper and discusses possible future work.

II. FOUNDATION

Malware detection and family identification can be placed
into two categories: signature-based and machine learning-based
[53]. For signature-based methods, security engineers must
produce (often, manually) specifications that match against key
properties of a malware family. For learning-based classification,
techniques utilize machine learning to automatically determine
whether an app is benign or malicious. Each Android app is an
instance represented by features used to distinguish between
apps supplied to learning algorithms (e.g., Android API methods
or permissions used). A dataset is a set of instances along with
their features.

To classify Android apps as benign, malware, or a specific
malware family, we leverage supervised learning algorithms.
For supervised learning, each instance is given a label; in the
case of malware detection, the labels chosen are often simply
“benign” or “malicious”. The dataset is split into a training and
testing set. A learning algorithm is applied to the training set
in order to produce a classifier, which can then label apps as
“benign” or “malicious”. The testing set is passed as input to
the classifier to assess its accuracy.

Signature-based methods are highly reliable for detecting
known malware, but are often constructed manually and
unreliable for detecting variants of known malware or zero-day
malware. Learning-based methods require a sizeable dataset
and properly selected features to ensure accuracy, but are more
likely to generalize in their findings, making them particularly
well-suited for identifying variants of known malware or zero-
day malware. In this paper, we utilize learning-based methods
for our Android malware detection.

III. REVEALDROID

To properly leverage learning-based methods, we must select
features that are likely to distinguish both benign apps from
malicious ones and different families of malware apps (e.g.,
DroidDream from DroidKungFu). Android malware detection
and family identification can benefit significantly from the
utilization of the Android platform itself to represent features
of apps. In particular, the types of Android API methods that
an Android app accesses often vary significantly between
malware families, in order to perform different types of
malicious behavior (e.g., sending SMS messages to premium-
rate numbers, stealing location and identifier information,
acting as a bot, listening for different activation triggers,
etc.). We leverage this insight about distinguishing between
and identifying Android malware to design an approach for
classifying Android malware families. By focusing on Android-
API invocations, which in different combinations tend to be
malicious or benign, RevealDroid is capable of achieving
obfuscation resilience.

In addition to leveraging API-based features, we intention-
ally design the features to be small, in terms of number of
features and features types—with three feature types and 219
features in total. This design allows our resulting classifiers to
be trained efficiently and quickly identify malware which, in
turn, achieves scalability. Even though our machine-learning
feature space is small, we carefully select features and provide
different learning classifiers, which are capable of determining
the combinations of features that exhibit malicious behaviors.

Malware
Classifier

| Supervised

Feature Extractor

Sensitive API
Extractor

Sensitive API

— N
Invocations

N

> Intent Action

i Learnin,
Extractor ===p| Intent Actions g
\ A
Malware \
Labeled Apps Package API Package API
‘ Extractor Invocations
Legend:

Fig. 1: Overview of RevealDroid’s malware classifier production

Figure 1 depicts an overview of RevealDroid, our approach
for constructing a malware classifier capable of distinguishing
benign apps from malicious ones, and can further determine
the family of an Android malware. The Feature Extractor
component obtains a set of features used to distinguish between
apps that are benign or belong to a malware family. To improve
run-time efficiency, all three feature types can be extracted in
parallel. These features, along with apps labeled with either
their malware family or as benign, are passed as input to a
supervised-learning algorithm—resulting in the construction of
a classifier for identifying malware families.

RevealDroid contains a set of features that involve Android
API usage so that they are obfuscation-resilient, represent core

semantics of an Android app, and are relevant for determining
if an app is malicious or belongs to a particular malware
family. None of our selected features require complicated
program analyses, making them both efficient and difficult to
obfuscate. At the same time, RevealDroid allows its features to
be used in different combinations, enabling trade-offs between
obfuscation resiliency, efficiency, and accuracy (e.g., higher
accuracy for family identification, unless apps are obfuscated).
RevealDroid contains the following three types of Android API-
based features: (1) Android API usage categorized by whether
or not they provide access to security sensitive information or
functionality—which is identified by Sensitive API Extractor in
Figure 1, (2) actions of Android messages that an app may listen
to—which is identified by Intent Action Extractor in Figure
1; and (3) Android API usage categorized by the package
to which the API belongs, which is determined by Package
API Extractor in Figure 1. Surprisingly, despite the simplicity
of our features and only having a small number of features,
our evaluation results will demonstrate that RevealDroid is
capable of achieving high accuracy, scalability, and obfuscation
resiliency (see Section V).

For each type of feature, this section explains its importance,
and the manner in which the feature type is represented and
extracted. The section then covers the labeling of apps and
RevealDroid’s use of supervised-learning algorithms to produce
classifiers for detecting malware and identifying their families.

A. Sensitive API-Usage Extraction

Malware apps must invoke or access Android APIs to
perform malicious behaviors (e.g., steal information, send SMS
messages to premium-rate numbers to make unlawful financial
charges, receive instructions from a remote server, etc.).

To that end, we utilize 30 categories that distinguish the
behavior of an API, allowing a supervised-learning algorithm
to determine if the particular usage of those categories is either
malicious or characteristic of the actions performed by a partic-
ular malware family. 28 of these categories represent security-
sensitive APIs, one category represents widget-based APIs, and
another category represents any APIs not belonging to the other
categories. The security-sensitive API categories are determined
by SuSi [36], a machine-learning approach for categorizing
Android source and sink API methods. For each category,
Sensitive API Extractor determines the number of invocations
per category an app makes to an Android API method, which
are used as features for an Android app. Formally, the feature
vector SAPI, = (51, ...,5i,..,5|c|), where C is the set of sensitive
API categories, s; = |{mem € methods(i)}|, m is an invocation
of a method in an Android app a, and methods(i) is the set of
methods in category i € C.

To illustrate how such features can help distinguish malware
families, Table I depicts features for a subset of categories from
three Android malware families. For example, in Table I, the
Geinimi sample invokes database (DB) APIs 37 times, and SMS
APIs only once. The table shows that a supervised learning
algorithm can determine that Geinimi samples only access the
SMS API once, DroidKungFul invokes logging APIs a limited
number of times (e.g., 35 times rather than over 220 times),
and jSSMSHider uses inter-process communication APIs (i.e.,
sending Android messages) in a very limited manner (e.g., 6
invocations rather than over 130).

TABLE I: Example Sensitive API features from known Android
malware families

DB IPC LOG NET SMS Fam

mal4 37 133 246 23 1 Geinimi
mal5 7 139 35 24 0 DroidKungFul
mal6 4 6 226 10 0 jSMSHider

It is possible to treat each access to particular Android API
as a separate feature. However, such a design would result
in a large feature space with over 26,500 features, resulting
in possible scalability and accuracy issues for a supervised-
learning algorithm or the resulting classifier [44], [50], [48].

B. Intent Action Extraction

Different families of malware activate based on different
actions of Intents [57], which are messages sent and received
by Android components. An action of an Intent specifies the
expected behavior to be performed on receipt of the Intent (e.g.,
opening an editor), or an event that has occurred in the Android
system (e.g., an indication that the device has finished booting).
Consequently, Intent actions are important information useful
for distinguishing between malware families. For example,
DroidDream listens for Intents indicating the launch of the
Android home screen; BeanBot listens for messages that request
the initiation of a phone call.

To identify such actions, Intent Action Extractor analyzes
an app’s Android Manifest file and any Broadcast Receiver
components to determine messages that an app may listen to.
The Android Manifest file is an XML file included with every
Android app. In that file, a developer can specify the actions of
an Intent that the app may process. Broadcast Receivers listen
to Intents broadcasted by other apps or the Android system.
In particular, Intent Action Extractor examines the onReceive
method of Broadcast Receivers, which are callbacks that process
broadcasted Intents. By analyzing both the app’s code and
Manifest file, Intent Action Extractor obtains comprehensive
information about actions that may activate different families
of malware. For our approach, a total of 108 boolean features
represent the actions that an app may process. More formally,
the Intent actions feature vector /A, = (iai,...,ia;,...,iay),
where [is the set of actions for Intents, ia; = 1 if app a listens
to action i in a Broadcast Receiver and ia; = 0 otherwise.

TABLE II: Example Intent action features from three known
Android malware families

MAIN BATT SYS PKG Fam
mal4 1 0 0 0 DroidDream
mal5 0 1 1 0 DroidKungFul
mal6 0 0 0 1 jSMSHider

Table II shows a simplified version of the Intent action fea-
tures for three malware families: DroidDream, DroidKungFul,
and jSMSHider. Both DroidDream and DroidKungFul are
malware families that utilize root exploits and enable remote
control. However, they can be distinguished by the Intent
actions they listen to: DroidDream listens to Intent actions
corresponding to the launch of the Android home screen

(MAIN); DroidKungFul listens to a variety of system events
(SYS) and Intent actions related to battery consumption (BATT).
jSMSHider is one of the rare malware families that register to
receive Intent actions corresponding to packages (PKG) being
installed, replaced, or removed on an Android device.

C. Package API-Usage Extraction

In situations where sensitive API features and Intent actions
are insufficient, Android API usage categorized by packages is
included as a feature to aid a classifier in detecting malware and
distinguishing between malware families. These features have
been shown to be useful for distinguishing malware families
when manually specifying their signatures [25]. Consequently,
we chose to include such features for detecting and identifying
families of Android malware using machine learning. To that
end, Package API Extractor in Figure 1 determines the number
of API invocations per Android package. For example, if
three methods of classes in the android.telephony package
are invoked, then the feature corresponding to that package
obtains a value of 3. Formally, the feature vector PAPI, =
(P1,--,Pis -, P|p|)> Where p; = |{m em € methodPkgs(i)}|, P
is the set of Android API packages, methodPkgs(i) are the set
of methods in package i, and m is an invocation of a method
in an Android app a. By selecting packages to represent API
usage, we reduce the feature space, similar to the case for
information-flow features, to a total of 81 features, which helps
to ensure efficient classifier production.

D. Labeling and Classifier Selection

RevealDroid can detect whether an app is benign or
malicious, or determine the family to which a malware belongs.
RevealDroid can produce different classifiers to perform these
functions. The classifier constructed by RevealDroid depends
on the labels used when the classifier is trained. Furthermore,
RevealDroid is designed to use different classifiers—some of
which may be better for identifying malware families, while
others may produce better malware detectors.

To that end, RevealDroid can build multiple n-way clas-
sifiers, where 7 is the number of labels for an Android app.
To simply detect whether an app is malware, the training set
of Android apps can simply contain n = 2 labels: benign or
malicious. For malware family identification, the number of
labels correspond to the number of malware families in the
training set. For example, Android Malware Genome contains
49 malware families, resulting in n = 49 for a malware classifier
trained on Malware Genome.

The number of labels for family identification significantly
increases the difficulty of correctly labeling an Android app,
as compared to the 2-way classification when distinguishing
between benign and malicious apps. Nevertheless, as our
evaluation results will demonstrate, RevealDroid is capable
of achieving high accuracy for identifying malware families of
malicious apps.

The supervised-learning algorithm used to construct a classi-
fier can considerably affect its resulting accuracy. Consequently,
we (1) allow RevealDroid to utilize different learning algorithms
and (2) assess the algorithms best-suited for Android malware
detection and family identification in Sections V-E-V-F.

IV. EVALUATION DESIGN AND SETUP

To evaluate RevealDroid, we study its accuracy, efficiency,
and resiliency to transformations intended to obfuscate malware.
Furthermore, we compare RevealDroid to another state-of-
the-research Android malware-family identification approach,
Dendroid, and a detection approach, MUDFLOW. Specifically,
we answer the following research questions:

e RQ1: Which combinations of RevealDroid’s features
and classifiers accurately distinguish between benign
and malicious Android apps?

e RQ2: Which combinations of RevealDroid’s features
and classifiers accurately identify the specific family
of a malicious Android app?

e RQ3: To what extent is RevealDroid’s accuracy af-
fected by transformations that obfuscate malware?

e RQ4: What is RevealDroid’s run-time efficiency? How
does this run-time efficiency compare to other learning-
based approaches for malware detection?

e RQS5: How does RevealDroid’s detection accuracy
compare to other detection approaches?

e RQ6: How does RevealDroid’s family identification
capability compare to another state-of-the-research
malware-family identification approach?

We implemented RevealDroid in Java for its feature extrac-
tion, malware detection, and malware-family identification. To
construct the Sensitive API Extractor, Intent Action Extractor,
and API Extractor, we leveraged Soot [43], a static analysis
framework, and Dexpler [21], a translator from Android Dalvik
Bytecode to Soot’s intermediate representation. For machine
learning, we selected Weka [29], a widely used machine-
learning toolkit for Java.

For conducting our experiments, we leveraged two com-
puting clusters. The first computing cluster (CC1) [3], has
35 compute nodes each with 8-core 2.60GHz CPUs and
64GB RAM, which are the compute nodes we utilized for
our experiments. The second computing cluster (CC2) [4] has
108 compute nodes, where each node has between 8 and 64
cores, and 32GB-505GB RAM.

To assess RevealDroid’s accuracy, we constructed a dataset
of both benign and malicious Android apps. To obtain benign
apps, we downloaded approximately 23,000 apps from two
sources: Google Play [7], Google’s official Android app
repository, and F-Droid [6], an open-source repository of
Android apps. Over 21,000 of the apps were obtained from
Google Play, while the rest were obtained from F-Droid. Google

Play is the official Android market and is vetted for malware.

Consequently, the probability of having malware in our samples
from Google Play is extremely low, and further alleviated by
our use of machine learning. F-Droid apps are overwhelmingly
benign apps for two reasons. First, apps uploaded to F-Droid

are scanned for malicious behaviors before they are posted.

Second, given that all F-Droid apps are open source, they are
all open to scrutiny for malicious behaviors.

We obtained malware samples from three Android malware
repositories: the Android Malware Genome project [57], the

Drebin dataset [10], and VirusShare [12]. Malware Genome
contains over 1,200 Android malware apps from 49 different
malware families. We utilized 22,592 Android malware samples
from VirusShare. We further leveraged 5,538 samples from the
Drebin dataset, which includes the samples from the Android
Malware Genome project.

V. EVALUATION RESULTS

For each research question, we discuss its importance,
the specific experimental setup needed to study it, and our
corresponding results. We then discuss the overall findings and
limitations of our study.

A. RQI: Detection Accuracy

To answer RQI1, we assess how accurate RevealDroid’s
features are for detecting whether an app is benign or malicious.
To that end, we developed two approaches based on a C4.5
decision-tree classifier [35] and a I-nearest-neighbor (INN)
classifier [15] for labeling an app as either benign or malicious.

Table III shows the correct classification rate among the
different combinations of three features: sensitive APIs (SAPI),
Intent Actions ([A), and package APIs (PAPI). For each
combination of features, classifiers, and apps, we performed a
10-fold cross-validation and report the rate of correctly classified
apps. For this experiment, we utilized 23,366 benign apps and
28,130 malicious apps.

TABLE III: Detection results for different combinations of
RevealDroid’s features and classifiers.

Features C4.5 INN
SAPIL 95.52% 95.00%
SAPI, PAPI 96.25% 96.29%
SAPI, PAPI, 1A 97.10% 96.61%
PAPI, 1A 96.710% 96.44%
SAPIL, 1A 96.42% 96.18%
PAPI 95.77% 95.711%
1A 86.63% 81.94%

All combinations of features exhibit a high correct clas-
sification rate. Feature combinations with sensitive API or
package API features have a correct classification rate between
95% and 97%. Package API features alone or sensitive API
features alone exhibit high accuracy—above 95% for both C4.5
and INN classifiers. Intent action features by themselves have
the lowest classification rate, but are both above 81%. All the
feature types together have the highest classification rate at 97%.
The C4.5 classifiers had slightly higher accuracy than 1NN
classifiers, mostly 1% higher accuracy. The greatest difference
in accuracy between C4.5 and INN classifiers occurs for Intent
action features alone, where there is a 5% difference.

To illustrate the high accuracy for detection of RevealDroid,
we showcase additional results of RevealDroid’s most accurate
classifier, a C4.5 classifier using sensitive API, Intent actions,
and package API features. Table IV depicts the 10-fold
cross-validation results for that classifier, which includes the
following: Precision indicates the extent to which the classifier
produces false positives; Recall shows the extent to which the

classifier produces false negatives; F-Measure is the weighted
harmonic mean of precision and recall; ROC Area represents
the discriminatory power of our classifier when distinguishing
between benign and malicious apps; and the average weighted
by the number of apps (WAvg.).

TABLE IV: Detection results for combinations of sensitive API,
Intent action, and package API features using a C4.5 classifier

Prec Rec F-Meas ROC

Area
Benign 96.90% 96.70% 96.80% 97.50%
Malicious 97.30% 97.40% 97.30% 97.50%
WAvg. 97.10% 97.10% 97.10% 97.50%

The table illustrates that RevealDroid’s most accurate
detection classifier obtains high accuracy for both benign and
malicious apps, with an F-measure value of 97%. In fact,
the precision and recall of benign apps alone and malicious
apps alone is 97%. RevealDroid also demonstrates a high
discriminatory power, as demonstrated by the 97% ROC Area
for benign apps, malicious apps, and the weighted average.
These consistently high results across multiple measures
demonstrates RevealDroid’s ability to detect malicious apps
with high accuracy.

B. RQ2: Family Identification

Identifying an Android app as malware is insufficient for
dealing with the damage it may cause. Once a malicious app is
deployed, it may install other apps, steal information, modify
settings, etc. Thus, determining the family to which an app
belongs can aid engineers and end users in determining how
to deal with the malicious app, besides simply removing it.

Original Android Malware Genome. To determine Re-
vealDroid’s ability to classify Android malware apps into
families, we assessed RQ2 by utilizing the Android Malware
Genome (AMG) [57], which contains over 1,250 apps and 49
malware families. To that end, we used RevealDroid to construct
classifiers with 49 different labels, one for each family in AMG.
We determined the combinations of classifiers and features that
provided the most accurate classification of AMG.

Table V depicts the classification rate for the most accurate
classifiers among the different combinations of our three feature
types. For this experiment, we conducted a 10-fold cross-
validation to assess the accuracy of our various classifiers
and features. As in the prior experiment, the numbers of apps
(No. Apps) in Table V vary due to the types of features used.

TABLE V: RevealDroid’s classification rate for family identifi-
cation utilizing different features and classifiers on AMG

Features C4.5 1NN

SAPI 87.69% 87.29%
PAPI 88.48% 88.64%
SAPIL, 1A 91.51% 91.75%
1A, PAPI 90.58% 92.42%
SAPI, PAPI 91.18% 89.28%

SAPL IA, PAPL 93.62% 92.98%

Overall, the accuracy of RevealDroid’s malware-family
classifiers is between 87% and 94% for all combinations of

features and classifiers. These results showcase RevealDroid’s
ability to identify a malicious app with high accuracy. This
outcome indicates that our API-based features are well-chosen
for discriminating between malware families.

Combinations of our three feature types significantly
increased the accuracy for family identification, which is
difficult to do given the already high classification rate of
either package or sensitive API features alone. Although the
overall increase in correct classification rate is 4%-7%, these
features significantly improved accuracy for specific families.
For example, Intent action features raised the accuracy of
samples from the GoldDream family, consisting of 47 samples,
to 100% from 85% for sensitive API features. As another
example, package API and Intent action features increased the
accuracy for the DroidDream family, consisting of 16 samples,
from 48% to 94% when combined with sensitive API features.

Expanded Android Malware Genome. To further assess
our classifier and determine if more samples for particular
families would improve our results, we significantly expanded
the samples that exist in AMG. To that end, we utilized a
set of Android malware samples from VirusShare [12], which
contains over 24,000 unlabeled malware samples ranging from
May 2013 through March 2014, whereas the original AMG
samples are from August 2010 through October 2011. To
identify the families of those samples, we leveraged VirusTotal
[13], a service that contains metadata about malware. We
constructed a client to obtain possible families identified by over
50 commercial antivirus products. For each Android malware
sample in VirusShare, we recorded the malware family that
appears most among the 50 products. From the VirusShare
samples, we identified 857 samples from families that are
part of the AMG project and extracted their features using
RevealDroid. We combined those 857 samples with the original
AMG samples to produce an expanded AMG (EAMG). As
a result, we increased the number of samples by 68% of its
original size. The overwhelming majority (76%) of the new
samples belong to GingerMaster (305), Plankton (242), and
KMin (107). This increase in samples is particularly stark for
the GingerMaster family, which originally contained only 4
samples—a relatively low number for training a classifier.

TABLE VI: RevealDroid’s classification rate for family identi-
fication utilizing different features and classifiers on EAMG

Features C4.5 INN

SAPI 84.38% 86.11%
PAPI 86.05% 87.40%
SAPIL, 1A 89.93% 91.09%
1A, PAPI 90.15% 91.79%
SAPI, PAPI 87.78% 88.65%

SAPIL, IA, PAPI 90.54% 91.74%

To assess RevealDroid on EAMG, we performed a 10-fold
cross-validation on EAMG using a C4.5 and 1NN classifier
with the same combinations of features, similar to the previous
experiment for malware-family identification. Table VI shows
our results for EAMG.

Similar to our previous results, RevealDroid correctly
classifies 84%-92% of the malware samples in EAMG. This
consistently high accuracy, despite a significant increase in
the dataset size, demonstrates the effectiveness of RevealDroid

for family identification. Furthermore, the trends regarding
increases for specific families remain for EAMG as it did for
AMG. For example, adding both Intent action features and
package API features to sensitive API features improved the
accuracy for the GoldDream family—consisting of 60 samples—
from 85% to 95% and for the Zitmo family—consisting of 248
samples—from 77% to 88%. Lastly, whether the GingerMaster
family could be reliably classified was unclear because there
were only 4 samples in AMG. However, in EAMG, with an
additional 305 GingerMaster samples, combinations involving
sensitive API features obtained up to 91% accuracy.

The results for AMG and EAMG indicate that combinations
of sensitive API features are highly accurate for identifying
manually-labeled malware families.

VirusShare and Malware Genome Families. To assess
RevealDroid’s classifiers’ effectiveness on more recent Android
malware families, we evaluated those classifiers on a much
larger set of malware samples from VirusShare. To produce a
ground truth of families for malicious apps beyond those found
in AMG, we again leveraged VirusTotal. We uploaded every
sample in VirusShare to VirusTotal, which returned a label for
each app. Each label was, in turn, parsed to obtain a family
name. For example, a malicious app labeled as Android/Fam.B
would be parsed to obtain “Fam” and highly generic terms (e.g.,
“Android”), single letter terms (e.g., “B”), and non-alphabetic
terms were removed. After this parsing, if five or more antivirus
products agreed on the family label for the app, we assigned
that label to the app. The label that appears the most is accepted
as the final family label, where ties are broken arbitrarily. To
further improve the fidelity of the family labeling, we removed
samples with low reputation scores that are not necessarily
malware (e.g., some adware) or highly generic labels (e.g.,
some apps are literally labeled “generic”’) were also eliminated.
We further combined this sample set with EAMG, resulting in
a dataset of 90 families and 19,321 malware samples. Table
VII depicts the family labels with 200 or more samples from
that dataset, totaling 16,756 samples.

TABLE VII: Family labels with 200 or more samples after
combining VirusShare and EAMG families

Family No. of Samples
UMpay 216
Plankton 249
root exploit 252
Airpush 269
Opfake 302
Utchi 306
GingerMaster 353
Admogo 362
Youmi 518
Adwo 523
DroidKungFu 538
SMSreg 558
Agent 856
Fakeinst 1655
Dowgin 2063
SMSsend 7736

Table VIII shows the correct classification rate for Re-
vealDroid’s most accurate classifiers. RevealDroid’s classifiers
all achieve 85%-88% correct classification rates. This result
is remarkable given the number of samples and the possible
family labels per sample: A random classifier would obtain only

TABLE VIII: RevealDroid’s classification rate for family
identification utilizing different features and classifiers on
VirusShare and EAMG families

Features C4.5 INN

SAPI 85.52% 86.42%
SAPI, 1A 87.83% 87.06%
SAPIL, 1A, PAPI 88.24% 87.25%
PAPI 85.75% 85.06%
SAPI, PAPI 86.39% 85.96%
1A, PAPI 87.64% 86.84%

about 1.1% correct classification rates; and a naive classifier
that simply marks every app with the most frequent family
label (SMSsend) would only obtain a 40% classification rate.
Consequently, for every 10 apps that RevealDroid classifiers
label, only 1 app would need to be manually corrected.

A handful of malware families make a significant difference
to the results of this particular RevealDroid classifier. Ginger-
Master samples and Dowgin samples tend to be classified
as each other, due to similar API usage. However, this issue
can be alleviated using the EAMG classifier, which obtains
91% accuracy for the GingerMaster family. The Root exploit
label tends to be classified as SMSsend, GingerMaster, or
Gingerbreak. Given that Gingerbreak is a root exploit, and
GingerMaster utilizes that particular exploit, these classifica-
tions are relatively close. Nevertheless, RevealDroid is not
designed to detect malware at the root level, since it is an
application-level analysis: A more specific analysis is likely
needed to accurately detect root exploits for Android. The last
major family affecting RevealDroid’s classification rate is the
relatively generic malicious Agent family label, which denotes
mainly Trojans, Viruses, and Worms. This misclassification
likely occurs since the label itself is not discriminative enough—
targeting three different types of higher-level families.

C. RQ3: Obfuscation Resiliency

Malware can avoid detection by using evasive techniques
that obfuscate malicious behaviors. Previous work has shown
that 10 commercial antivirus products are unable to detect
Android malware after simple transformations are applied to
obfuscate such malware [37], [38]. To assess RevealDroid’s
resiliency to obfuscations, we transformed existing malware
using DroidChameleon [37], [38], a tool suite capable of
automatically transforming malware in a variety of ways.
DroidChameleon transformations have previously been shown
to prevent 10 commercial antivirus products from detecting the
resulting transformed apps [38]. Another alternative obfuscation
tool for Android we considered is ADAM [55]. However,
DroidChameleon provides a wider variety of obfuscations, has
composite transformations, and has demonstrated the ability
to completely evade anti-malware detection. We selected apps
from the original AMG to assess RevealDroid’s obfuscation
resiliency. Using AMG allows us to assess both the malware
detection and family identification abilities of RevealDroid
for obfuscation resiliency. Specifically, we evaluated different
subsets of RevealDroid’s three types of features for their
obfuscation resiliency.

Table IX depicts the sets of transformations we applied:
call indirection, where a method invocation is moved into a

TABLE IX: Sets of transformations attempted or applied

Trans. Call Rename Encrypt Encrypt
Set Indirection Classes Arrays Strings
tsO X X X X

tsl X X X

ts2 X X

ts3 X

new method which, in turn, is invoked in place of the original
method; renaming of classes, where the identifier of classes is
changed, which may prevent detection or family identification
that searches for specific class names; and encrypting arrays
and strings if they are used by an app. We selected these
transformations because they have been shown to evade anti-
virus products [38], can be combined to produce stronger
obfuscations, and actually result in apps that are still usable.
We manually tested several malicious apps, after applying
transformations, to verify that the obfuscations resulted in
runnable, usable apps.

We attempted to utilize another set of transformations from
DroidChameleon: reordering code, which reorders instructions
in the methods of a program, and a reflection transformation,
which converts direct method invocations to ones that leverage
the Java reflection API. We found these transformations to result
in apps that crash or have errors that Soot catches, both of
which never occurred before the transformations were applied.
We also discovered that the code reordering often transforms
a method such that it skips much of its original functionality.
Consequently, we could not include these transformations in
our analysis.

For each app, we first attempted to obfuscate it using all
transformations. Each time a set of transformations could not be
applied by DroidChameleon, we removed one transformation
from the set. Previous work on Android obfuscation has
demonstrated that some transformations cannot be applied
together to the same app [30]. Therefore, we needed to apply
transformations in different combinations to assess if they are
feasible. Consequently, we attempted to transform apps in the
following sequence (¢s0,ts1,z52,¢s3). Using this scheme for
our selected set of malware apps from AMG, we successfully
applied transformation set #s0 to 969 apps, transformation set
tsl to a single app, and transformation set #s3 to 231 apps. No
apps could be successfully transformed using transformation set
ts2. In total, these transformations resulted in 1,201 obfuscated
malware samples for this experiment.

We split our app dataset using two different training
strategies to assess RevealDroid for obfuscation resiliency.
For the first strategy, we trained classifiers on a dataset that
contains the original apps and then tested those classifiers on
the obfuscated versions of those apps. This strategy has been
leveraged by previous work [53]. For the second strategy, we
refrain from training classifiers on any apps that we transformed
(i.e., original, malicious apps before obfuscation); however, we
test on the transformed apps. The second strategy raises the
standard of obfuscation resiliency compared to the standard used
in previous work. For the second strategy, the classifier must
be able to detect and identify the family of malicious apps that
are (1) obfuscated and (2) never seen before by a RevealDroid
classifier. For example, this kind of strategy simulates the case

TABLE X: Detection rates for obfuscated, malicious apps

\ \ Detection | Family Identification
Trained Features C4.5 INN C4.5 INN
on
Original
SAPI 97.42% 99.00% 92.84% 99.50%
Yes SAPI, 1A 97.98% 93.11% 74.79% 72.52%
SAPI, PAPI 99.50% 100.00% 96.67% 99.67%
PAPI 98.92% 100.00% 97.17% 99.67%
SAPI 93.42% 92.01% 83.22% 86.44%
No SAPI, 1A 92.35% 87.40% 75.17% 68.66%
SAPI, PAPI 92.01% 94.09% 88.81% 87.63%
PAPI 92.76% 92.51% 87.12% 87.63%

where a malicious app is previously packaged as a game—
but is later packaged instead as an app for downloading
wallpaper, given a few new malicious functionalities, and is
finally obfuscated. Note that an overwhelming majority of
apps in AMG are repackaged, making the previous example
particularly relevant. Consequently, a classifier must truly learn
the malicious behavior in such a situation, and ignore irrelevant
features (e.g., features that are obfuscated). Overall, the second
strategy gives us a clearer idea about RevealDroid’s ability
to generalize its detection and family identification while still
maintaining accuracy in the face of obfuscation.

Table X showcases the Detection and Family Identification
rates for the two most accurate classifiers (C4.5 and INN)
produced by RevealDroid for a combination of Features. The
top section of the table depicts the results for classifiers
Trained on the Original malicious apps that are transformed for
obfuscation, i.e., the first training strategy explained above. The
bottom section of the table reports the results for classifiers that
are Not trained on the original apps that are transformed for
obfuscation, i.e., the second training strategy explained above.
Gray cells indicate the highest detection or family-identification
rate for a combination of features and a training strategy.

Detection. For the first training strategy, the detection rate
is very high for all combinations of features and classifiers—
ranging from 93% to 100% (top-left region of Table X).
The combination of sensitive API and package API features,
and package API features alone, when utilized with a 1NN
RevealDroid classifier obtains a perfect detection rate. Two
other combinations of features and classifiers obtain a near
perfection (99%) detection rate: sensitive API features used
with a INN classifier, or sensitive API features when used in
tandem with package API features and a C4.5 classifier.

For the second training strategy, the detection rate remains
high for all combinations of features and classifiers, ranging
from 87% to 94% (bottom-left region of Table X). Thus, the
lack of training on the original apps, prior to our addition of
automated transformations, reduced the overall accuracy only
very slightly. Similar to the first strategy, the C4.5 classifier
with sensitive API and package API features obtain the highest
detection rate. Unlike the first strategy, C4.5 classifiers tend to
slightly outperform 1NN classifiers.

As can be observed in Table X, Intent action features slightly
reduce the detection rate for obfuscated apps, unlike for non-

obfuscated detection (see Section V-A). This result indicates
that Intent action features are sensitive to obfuscations. For that
reason, we only show one combination of Intent action features
for our obfuscation-resilience evaluation. We will examine the
affect of obfuscations on Intent action features more below in
the case of family identification.

Family Identification. For family identification using the
first training strategy, RevealDroid’s classifiers achieve 73%-
99% correct classification rates (top-right region of Table X).
In particular, combinations of sensitive API and package API
features achieve the greatest obfuscation resiliency—from 93%-
99%. Combinations involving package API features and 1NN
classifiers achieve the highest accuracy at 99%.

In the case of family identification, the effect of obfuscation
on different features varies widely. Intent action features—
which have already shown slight evidence for a lack of
obfuscation resilience for detection—have a generally negative
effect on the correct classification rate for both training
strategies. We took a closer look at the results and determined
that Intent action features are not necessarily referenced using
the Android API directly, but instead are hard-coded as strings.
As a result, the encrypt strings transformations can obfuscate
Intent action features.

Classification rates for the second training strategy range
from 69%-89% (bottom-right region of Table X). Without
utilizing Intent action features, the classification rates for that
training strategy range from 83%-89%. The C4.5 classifier
with sensitive and package API features achieves the highest
classification rate in this scenario at 89%. Similar to detection
rates, the second training strategy results in very slightly lower
classification rates.

Summary. Sensitive API combined with package features
exhibit high obfuscation resiliency for both training strategies—
with rates between 88% and 100%. By extension, these
combinations of features exhibit the most obfuscation resiliency
for both detection and family identification. Nevertheless, either
sensitive API or package API features individually achieve
very high results. Overall, these results indicate that, with
lightweight features, both detection and family identification
of Android malware can be accurately performed, even for
malware obfuscated with a variety of transformations.

D. RQ4: Run-Time Efficiency

The number of both benign and malicious Android apps is
growing very quickly [14] making it is increasingly important
that Android malware analysis scales so that such malware
does not remain undetected long enough to do major damage,
or even any damage. A slow analysis of Android apps can
allow malware to propagate undetected longer. Furthermore, an
efficient analysis of malware apps is particularly beneficial
for Android end users, since they can protect themselves
further by using RevealDroid’s classifiers and extractors on
their Android devices. Note that this device-level detection
and family identification is particularly useful since Android
markets have relatively poor vetting processes [58], [23].

To assess RevealDroid’s efficiency, we measured run-times
for both (1) feature extraction and (2) classifier training and
testing. Note that once a classifier is trained, classifying

an app using it—whether for malware detection or family
identification—is practically instantaneous. Consequently, fea-
ture extraction and classifier training are the key bottlenecks
for machine learning-based malware detection and family
identification.

General Feature-Extraction. To determine RevealDroid’s
general run-time efficiency for extracting features, we selected
100 apps randomly from our dataset. We then ran our three
types of feature extractors on each app. Such an experiment
allows us to assess the general run-time efficiency of each type
of feature. For this experiment, we ran our analyses on CC2
on a 64-core node.

TABLE XII: Average feature-extraction times for each type of
RevealDroid feature in seconds.

SAPI 1A PAPI

Average (s) 15.67 7.84 14.98

Table XII depicts the results of our general feature-extraction
efficiency analysis. Each feature takes under 16 seconds on
average to compute. Furthermore, RevealDroid is designed to
extract features in parallel, making the total feature extraction,
on average, also under 16 seconds. These run-times are reason-
able for practical malware detection and family identification
that is obfuscation-resilient and accurate.

Information-Flow Comparison. To assess the efficiency
improvement of RevealDroid’s feature extraction over a state-
of-the-research detection approach, we compare RevealDroid’s
efficiency extraction against MUDFLOW'’s feature extraction,
which is a state-of-the-art machine learning-based approach
for Android malware detection. MUDFLOW utilizes flow
features alone. Another state-of-the-art approach for malware
detection and family identification, DroidSIFT [53], also relies
on flow-based features and machine learning. However, the
tool is unavailable, preventing us from comparing against it.
Due to the use of flow features in multiple state-of-the-art
learning-based malware detection approaches [53], [20], [54],
flow features are important to compare against for efficiency,
since they require advanced program analysis, as opposed
to RevealDroid’s lightweight features. MUDFLOW extracts
flow features utilizing, FlowDroid [19], a tool for accurately
detecting information flows that are potential data leaks in an
Android app. We determine the performance of RevealDroid’s
and MUDFLOW?’s feature extraction by computing the runtime
for extracting their features from a selection of apps.

To ensure a fair comparison for our efficiency analysis,
we utilized CC1 and selected nodes with the same hardware
configuration. This experimental design prevents bias that
may occur due to the varied compute nodes available on the
computing clusters we used. However, due to fair scheduling
algorithms utilized on CC1, we ended up using significantly
slower nodes than those available on CC2, with only 8-cores on
a node, resulting in higher run-time averages for RevealDroid’s
three feature types.

We configured FlowDroid in order to maximize performance
and achieve the fairest efficiency comparison possible. For alias
analyses, we set FlowDroid to be flow-insensitive. We disabled
tracking of static fields and emulation of Android callbacks.

TABLE XI: Efficiency analysis of selected apps for feature

extraction

| Extraction Runtime (s)

Name or Hash Description Rep. Size SAPI 1A PAPI Flow
com.socialnmobile.hd.flashlight flashlight app B 1.3MB 29.18 5.72 54.93 280.04
com.netqin.mobileguard system optimizer B 2.6MB 60.42 11.70 61.49 446.66
org.sufficientlysecure.keychain_27000 file and communcation encryption B 3.5MB 58.98 14.08 89.54 1503.82
com.opentable restaurant reservations B 4.5MB 132.97 19.60 120.51 2550.36
com.yahoo.mobile.client.android.atom Yahoo news reader B 5.7MB 48.42 1237 87.62 1672.98
com.twitter.android Twitter app B 15MB 91.86 23.88 173.74 4464.50
fc8012f0f79d44c930449a4725a106al from the PJApps family M 634KB 11.30 4.03 21.63 936.74
a85446e62ea283542653b6d7599d2e8f adware and information stealer M 574KB 32.70 4.98 37.68 458.36
7316dcd5c397ac0644a5a41eaac9db05 trojan and information stealer M 692KB 33.21 4.65 39.86 35782.35
a3110b41d078d60979f147342c88a6d0 adware, information stealing M 1.3MB 22.03 4.16 30.22 417.67
83b960675682705f94464fd7e26def55 adware and information stealer M 985KB 10.91 3.56 23.24 1199.36
030b481d0f1014efa6f730bf4fcaff3d4bdc85ac from the PJApps family M 3.1IMB 33.99 5.22 34.77 1642.97
da58£dfc0042315ab3393904ec602c¢6115d240a5 from the PJApps family M 634KB 17.19 3.72 17.55 926.58
207fd9f3619ee825d38cfSe48efc3522e42a9¢83 from the DroidKungFu3 family M 392KB 11.90 2.70 14.17 278.00
0274a66cd43a39151¢39b6c940cf99b459344e3a from the DogWars family M 4.3MB 13.27 2.79 13.24 259.00
d1643fb08bbb8bf5759¢73cdb4ea98800700950c from the GingerMaster family M 199KB 9.12 2.44 10.55 588.00
8c6d33e8dbd2172654bae104a484fcd80cf22ba from the BaseBridge family M 1.1IMB 19.54 3.57 21.55 440.60
AVG | 37.47 7.60 50.13 3167.53

We do not compute exact propagation paths for FlowDroid,
since this setting does not affect flow feature accuracy, but is
expensive to compute. We set FlowDroid’s layout mode to none,
preventing analysis of GUI elements (e.g., input fields). Lastly,
the access paths propagated by FlowDroid’s taint analysis is
set to 1. This setting specifies that fields of objects (e.g., 0.f)
are propagated, where o is an object and f is a field; however,
no fields of fields are propagated (e.g., 0.f.g).

For our runtime analysis, Table XI shows the apps we se-
lected including their Reputation as either Benign or Malicious,
their Size in KB or MB, a short Description of each app, and the
name of the benign apps or the hashes of malicious apps. We
selected 6 benign apps, 5 malicious apps from VirusShare, and
6 malicious apps from Malware Genome. Due to the potentially
long run-times of flow-based features, we selected a smaller
number of apps for efficiency analysis than in our previous
analysis. Our selection of apps vary across several dimensions,
allowing us to draw broader lessens about RevealDroid’s and
MUDFLOW'’s feature extraction efficiency. Focusing on a
selection of apps and their dimensions further allows us to
understand how the feature-extraction times vary based on the
different dimensions. A gray cell for flow extraction indicates
an analysis of an app that ran out of memory before feature
extraction completed. In such a case, we show the runtime up
until the out-of-memory error occurred.

Flow features, which MUDFLOW leverages, took the
longest to run with an average runtime of 53 minutes—with
one malware sample taking almost 10 hours to run before the
analysis ran out of memory. This lack of scalability for flow
extraction is consistent with previous findings [20].

The other features could all be extracted, on average, under
a minute. Sensitive API feature extraction ran from 9 seconds
to 133 seconds. Package API feature extraction ran from 10
seconds to 174 seconds. Package API features likely take longer
to extract than sensitive API features simply because there are
more Android API packages than security-sensitive categories.
Intent action features were the fastest to analyze, taking on
average under 8 seconds.

Sensitive API features alone obtain high accuracy in general.
However, there is a greater than 85 times speedup from

10

extracting sensitive API features instead of flow features. Recall
that some apps (marked with gray cells in Table XI) actually
take more memory and time to run than we were able to allocate
even on a high performance computing cluster.

To obtain higher accuracy for detection or family identifi-
cation, sensitive API and package API features can be used
together—which results in an over 36 times speedup compared
to flow feature extraction, even when both features are extracted
serially. Combining sensitive API, package API, and Intent
action feature extraction times together still achieves a 33
times speedup compared to flow feature extraction, even when
all features are extracted serially, as opposed to in parallel.

Significant time savings are gained from using combinations
of features not involving data flow. For feature combinations
that exhibited high accuracy, a 33-85 times speedup for feature
extraction is achievable compared to flow feature extraction,
allowing thousands of more apps to be analyzed in the same
amount of time.

Consequently, the accuracy results from the previous
sections combined with our efficiency results indicate that
very high accuracy can be obtained without computing flow
features, i.e., MUDFLOW'’s most accurate features. In the next
section, we will demonstrate that RevealDroid can achieve
higher accuracy than MUDFLOW, even with computationally
inexpensive feature extraction.

Feature Extraction and Classification. Another bottleneck
for learning-based malware detection and family identification
is the time it takes for a supervised-learning algorithm to train
a classifier and, subsequently, test it. In a practical setting,
classifiers need to be regularly updated and re-trained in order
to maximize the possibility that such a classifier detects new
Android malware.

Table XIII depicts execution times, in hours, for both
feature extraction and classification on 9,731 apps. For this
experiment, we compared RevealDroid’s C4.5 (RD-C4.5) and
INN (RD-INN) classifiers with Adagio’s and MUDFLOW’s
classifiers. Each approach was run on CC2, using the same
hardware configuration. MUDFLOW took approximately 46
days to execute. RevealDroid’s classifiers take less than two

TABLE XIII: Feature extraction and classification run-times in
hours on over 9,731 apps

RD-C4.5 RD-INN Adagio MUDFLOW
Feature Extraction 42.36 42.36 56.12 1101.28
Classification 0.02 0.12 21.59 0.20
Total 42.37 4248 77.70 1101.48

days to execute, with Adagio taking more than three days.
Overall, RevealDroid is about 1.83 times faster than Adagio.
Consequently, RevealDroid’s classifiers are scalable compared
to other learning-based malware-detection approaches.

E. RQ5: Detection Comparison

Research-Prototype Comparison. To determine Reveal-
Droid’s accuracy improvement over the state-of-the-research
in Android malware detection, we compared it against two
research prototypes, MUDFLOW and Adagio [26]. Besides
MUDFLOW, we attempted to obtain state-of-the-research tools,
DroidSIFT and Drebin [18], by contacting their respective
authors. Drebin is another machine learning-based Android
malware detection approach. Unfortunately, both tools are
unavailable, preventing us from comparing against them directly.
However, in the place of Drebin, its authors suggested we
use their other tool, Adagio, which achieves similar accuracy
and efficiency results, and also utilizes machine learning. We
downloaded MUDFLOW and consulted with its authors to
verify that we are using their implementation correctly by
re-running MUDFLOW to replicate their results on their
original dataset. We further computed method-level flows from
FlowDroid as described in Section V-D, used those flows as
inputs to MUDFLOW, and verified that we can replicate the
high accuracy results from MUDFLOW'’s original study on
a subset of apps from their dataset. We performed a similar
verification in the case of Adagio.

We compared Adagio, MUDFLOW, and RevealDroid in
the following two scenarios: one involving only the original
untransformed apps, and another involving apps transformed
using DroidChameleon, as described in Section V-C. In the
scenario with no transformed apps, we split a dataset consisting
of 7,801 malicious apps and 1,747 benign apps into a training
set that has half of the benign apps and half of the malicious
apps, while the testing set has the remaining apps. For the other
scenario, the training set consists of 6,827 malicious apps and
876 benign apps; the testing set contains (1) 1,186 malicious
AMG apps obfuscated as described in Section V-C and (2) the
remaining 866 benign apps.

For classifier selection, we used the most accurate classifiers
of MUDFLOW and Adagio. For RevealDroid, we selected a
C4.5 classifier that uses sensitive API features. This selection
of a RevealDroid classifier is obfuscation resilient and highly
efficient, but not necessarily the most accurate, as demonstrated
in the previous sections. However, our results will demonstrate
that it still outperforms MUDFLOW and Adagio.

Table XIV showcases the Precision, Recall, and F-Measure
results for each approach and both scenarios (No Obfuscations
and With Obfuscations). For each of those metrics, the table
depicts results for Benign apps and Malicious ones. Overall,

11

RevealDroid’s classifier outperforms MUDFLOW’s two-way
classifier. In the scenario with no obfuscations, RevealDroid ob-
tains an average F-Measure of 87% compared to MUDFLOW’s
71%. For the scenario with obfuscated apps, RevealDroid
obtains an average F-measure of 87% compared to 74%.

The most striking difference between MUDFLOW’s and
RevealDroid’s results for both scenarios is each classifier’s
recall for benign apps. In the scenario with obfuscations,
RevealDroid achieves a 77% recall for benign apps compared
to MUDFLOW?’s 47%. For benign apps in the other scenario,
RevealDroid obtains a 73% recall compared to MUDFLOW’s
49% recall. These results indicate that MUDFLOW’s classifier
has a strong tendency to mark benign apps as malicious, unlike
RevealDroid’s classifier.

Adagio obtains 3% higher F-Measure results than Reveal-
Droid in the scenario with no DroidChameleon obfuscation.
However, with the DroidChameleon obfuscations, RevealDroid
significantly outperforms Adagio by 25%. In fact, Adagio is
the least obfuscation-resilient approach of the three that we
evaluated. This result is expected, particularly due to the use
of call-indirection transformations, which changes the expected
call graph that Adagio utilizes to identify malware.

In summary, RevealDroid obtains obfuscation resiliency and
accuracy for detection, as compared to two state-of-the-research
malware detection approaches.

Anti-Virus Comparison. In addition to comparing against
research prototypes, we assess RevealDroid’s detection rate
against commercial anti-virus (AV) products available on
VirusTotal. This experiment allows us to compare RevealDroid
against the state-of-the-practice, rather than just the state-of-the-
research. To that end, we conducted two experiments for this
AV comparison: one with 6,766 apps from VirusShare with no
additional obfuscations from DroidChameleon, and another with
1,200 Android Malware Genome apps with such obfuscations.
We utilized RevealDroid’s most accurate classifiers for our
comparisons. Among the 60 commercial AVs available on
VirusTotal, we depict our results for 12 common AVs. However,
none of the AVs obtained higher detection rates, for either
experiment, than RevealDroid. Furthermore, RevealDroid learns
to identify malware automatically, while AVs typically need
manually-produced signatures.

Figure 2 shows the results for the first experiment. Re-
vealDroid is capable of achieving a very high detection rate
(94%), which is slightly greater than the highest rate from a
commercial AV, ESET-NOD32 at 93%.

Figure 3 illustrates the results for the second experiment. In
this experiment, RevealDroid achieves a near-perfect detection
rate at 99%, similar to the highest AV, Kasperky—also at 99%.

Across both experiments, only a few AVs achieve above
90% detection rates: AVG, ESET-NOD32, Kasperky, and
McAfee. Only RevealDroid and ESET-NOD32 achieve over
90% detection rates for both experiments.

Overall, these experiments demonstrate that RevealDroid
achieves as high of a detection rate, or higher, as the best AV
tools. However, RevealDroid can learn to identify new malware
automatically as new malware samples become available, while
achieving obfuscation resiliency, and efficient feature extraction
and classifier construction.

TABLE XIV: Research-Prototype Detection Comparison

| MUDFLOW | RevealDroid | Adagio
| No Obfuscations | With Obfuscations | No Obfuscations | With Obfuscations | No Obfuscations | With Obfuscations
Prec Rec F-M Prec Rec F-M Prec Rec F-M Prec Rec F-M Prec Rec F-M Prec Rec F-M
Ben | 85.14% 34.17% 48.77%| 98.09% 47.46% 63.97%| 8430% 73.20% 78.36%| 93.30% 77.30% 84.55%| 89.96% 76.29% 82.57%| 53.55% 7321% 61.85%
Mal | 87.29% 98.70% 92.65%| 72.14% 99.33% 83.58%| 94.30% 97.00% 95.63%| 85.20% 96.00% 90.28%| 94.89% 98.10% 96.47%| 73.18% 53.51% 61.82%
AVG 86.22% 66.44% 70.71%| 85.11% 73.39% 73.77%| 89.30% 85.10% 86.99%| 89.25% 86.65% 87.41%| 92.43% 87.20% 89.52%| 63.36% 63.36% 61.84%
100.00% 100.00%
90.00% 90.00%
80.00% 80.00%
70.00% 70.00%
60.00% 60.00%
50.00% 50.00%
40.00% 40.00%
30.00% 30.00%
20.00% 20.00%
10.00% 10.00%
0.00% | 0.00%
«0\ & & <> SR o>@ «* <& &e «°\ & \\0 g & & S
@@0 « ¥ Q;\‘Qé@ &;éeo & 5 & ®é° " < %4&7’ @@0 v @’&Q e“;éﬁo & \@L,Q“ & ®é° " s %@”

Fig. 2: Detection rates for RevealDroid and anti-virus products
on 6,776 apps from VirusShare

F. RQG6: Family-Identification Comparison

To demonstrate the improvement in accuracy of Reveal-
Droid’s family identification over the state-of-the-art, we com-
pare RevealDroid against a state-of-the-art Android-malware
family-identification approach, Dendroid [41], which also
utilizes machine learning to classify malware. Dendroid uses
features that represent each method of an app as a sequence
of typed statements. We contacted the authors of another
approach, DroidSIFT [53], which also identifies families.
However, DroidSIFT’s authors are unable to share their
implementation. Consequently, we could not compare against
DroidSIFT. Note that neither MUDFLOW nor Adagio perform
family identification.

We closely consulted with the authors of Dendroid to ensure
we obtain the most accurate results using their tool as possible.
To that end, we replicated their evaluation and verified the
accuracy of our results with Dendroid’s authors. To compare
Dendroid and RevealDroid, we assessed both approaches using
AMBG. Specifically, we split AMG apps into a training and
testing set of approximately equal size using the second training
strategy from Section V-C. Given that 13 families in AMG only
have a single sample, we selected families which had at least
two samples, resulting in 33 families in total. For each family,
half of the samples were placed into the test set and half into
the training set. For families with odd-numbered samples, the
remaining sample was added to the training set. This splitting
strategy resulted in a training set of 626 apps and a testing set of
607 apps. For RevealDroid, we selected its INN classifier with
sensitive API and package API features since it demonstrated
high accuracy in our earlier experiments (see Section V-C).

Using that experimental setup, Dendroid correctly classified
73% of the test apps, while RevealDroid achieves an 87%
correct classification rate. Although our replicated results for
Dendroid are significantly lower than the Dendroid author’s

12

Fig. 3: Detection rates for RevealDroid and AV products on
1,200 AMG apps obfuscated using DroidChameleon

original results [41], we verified our results with those authors
and discovered an error in their experiment.

We further compared RevealDroid’s and Dendroid’s ob-
fuscation resiliency. To that end, we trained both Dendroid
and RevealDroid using the training set consisting of half
of AMG. We then replaced apps in the test set with their
obfuscated versions—transformed as discussed in Section V-C.
The resulting test set contains 590 apps.

RevealDroid demonstrated overwhelmingly greater obfusca-
tion resiliency than Dendroid: RevealDroid maintains an 87%
correct classification rate, while Dendroid’s classification rate
falls to 27%. This low result for Dendroid is unsurprising since
it relies on the structure of a method as features. Given that
the call indirection transformation that we applied to the test
apps alters that structure, the transformation prevents proper
classification by Dendroid.

G. Discussion and Limitations

One of the major goals of RevealDroid is to aid in
the selection of features that are obfuscation-resilient, highly
accurate, and highly efficient. Our results demonstrate that these
three qualities are best achieved, in tandem, using sensitive
API features and package API features, with either a C4.5 or
INN RevealDroid classifier.

Although Intent actions tend to improve detection and
family-identification results, they are, unfortunately, not
obfuscation-resilient. However, for malware that a RevealDroid
classifier has already trained on, that classifier is likely to
learn the malicious properties of the app, despite pre-existing
obfuscations. In this case, Intent action features become
particularly useful for distinguishing between malware families,
reducing the time needed to assess the damage an Android
malware sample is capable of.

One possible obfuscation that RevealDroid may be suscep-
tible to, is the addition of fake API calls, i.e., calls that do

not affect the semantics of the app, but may potentially affect
the features learned by RevealDroid classifiers. We have not
observed such obfuscations in the wild or through automated
transformations of Android apps. It is unclear the extent to
which such API calls can be injected into a program without
actually affecting it’s semantics. Adding too many API calls
will either make the program look highly suspicious, possibly
flagging it as malware, or break its semantics. Furthermore,
adding API calls that are not actually invoked at run-time
(e.g., using non-feasible conditionals), is detectable through
static analysis (e.g., through analyses that find conditionals that
always evaluate to false).

Nevertheless, we assessed RevealDroid’s ability to deal
with such obfuscations. We simulated the addition of such fake
API calls by randomly adding such calls to the features of
thousands of malware samples in our dataset. Adding fake API
calls in the dozens only reduced RevealDroid’s classifier results
by a few percentage points. This is a reasonable number of
obfuscations to include, otherwise, the app may break or no
longer achieve the same semantics. Any higher number of calls
was perfectly detectable—achieving 100% detection rates—by
using a Support Vector Machine (SVM) [40] classifier. This
result is sensible since apps with an unusually high number of
APIs act as outliers and resemble abnormal behaviors that are
potentially malicious, and thus marked by an SVM classifier
as such. However, such classifiers are considerably slower than
C4.5 and INN classifiers, taking up to days more to train and
test on our datasets.

Limitations of the dataset utilized by RevealDroid represents
a threat to external validity. However, we carefully selected
apps to maximize the probability that they are correctly marked
as benign or malicious (see Section IV). We further utilized
family labels already verified by security experts (see Section
IV and Section V-B). Moreover, machine-learning algorithms
themselves are partially self-corrective, through statistical
methods, for errors in the datasets. Furthermore, malware that
minimizes use of Android APIs or leverages mechanisms such
as reflection, native code, or dynamic class loading may not be
properly classified by RevealDroid. However, some apps (e.g.,
those in the Android Malware Genome) already include such
mechanisms. Including package API features, already include
representations of some of these features (e.g., dynamic class
loading). Nevertheless, extracting features that represent novel
malware behaviors that can be identified through machine
learning remains as interesting future work.

VI. RELATED WORK

We provide an overview of the current state of Android
malware detection and family identification. We first discuss the
techniques that solely aim to detect malicious Android apps.
We then cover signature-based and machine learning-based
techniques that aim to identify the family of such apps.

Some techniques detect Android malware by focusing on
specific risk factors. RiskRanker [28] ranks apps as either high-
risk, medium-risk, or low-risk in order to identify malware.
Peng et al. [33] perform risk ranking and scoring by leveraging
probabilistic generative models to identify malware apps. MAST
[22] ranks apps according to their suspiciousness using a social-
sciences technique.

13

AppAudit [47] is a recent approach that combines static
and dynamic analysis to identify apps that leak data. Applntent
[51] is another approach for determining data leaks that focuses
on identifying whether the leak was intended by the user.

Other techniques utilize virtualization or sandboxes to aid
in the detection of Android malware. DroidScope [49] is
a virtualization-based malware analysis engine that utilizes
different dynamic analyses to monitor malware. CopperDroid
[42], [39] is an approach for reconstructing Android-malware
behaviors through virtualization, a focus on system calls, auto-
matic IPC unmarshalling, and value-based data-flow analysis.
A5 [45] is an open-source sandbox for Android that aims to
trigger malicious behaviors.

Machine learning has been used for simply distinguishing
between benign and malicious Android apps. MUDFLOW [20]
uses information flow-based features and machine learning
to distinguish benign and malicious apps. DroidMat [46]
distinguishes between benign and malicious apps through
various features extracted using static analysis and clustering.
Furthermore, it relies on easily obfuscatable features (e.g.,
names of component classes). We contacted the authors of
DroidMat multiple times to obtain its implementation so that
we can compare against it. However, none of the authors ever
responded to our queries.

Drebin [18] is designed to detect Android malware directly
on an Android device and uses machine learning. Drebin
also uses pre-defined templates to display potentially useful
information about what makes an app malicious. Unlike Re-
vealDroid, Drebin relies heavily on features based on constant
strings (e.g., names of components) that are obfuscatable using
basic automated transformations (e.g., renaming and encrypting
identifiers and string values). Furthermore, their feature space
is very large, containing about 545,000 features, as compared
to RevealDroid’s feature space of 219 features, which allows
our classification—and potentially our feature extraction—to be
significantly more efficient and scalable. Unfortunately, Drebin
is unavailable, so we could not use it in our experiments.

Certain techniques leverage Android-app permissions to
identify malware apps. Kirin [24] certifies an Android app
against a set of rules to determine if the app may perform
malicious behavior. DroidRanger [58] attempts to identify
malware based on the permissions and behaviors of an app.

ViewDroid [52] and MassVet [23] are capable of detecting
malicious Android apps and both focus on repackaging detec-
tion. Both techniques leverage graphs based on UI widgets
of an Android app. Due to the use of control flow-based
graphs, both of these techniques are potentially susceptible
to control flow-based obfuscations. RevealDroid is not vul-
nerable to such obfuscations, due to the fact that it does not
rely on any program-analysis graph representations. Unlike
in the case of RevealDroid, no automated transformations
were applied to existing malicious apps to assess MassVet;
automated transformations were applied to benign apps for
MassVet. However, as discussed in the MassVet paper [23],
obfuscations of malicious methods may be problematic for
MassVet. Additionally, whether the transformed benign apps
utilized combinations of transformations was not discussed.
Unlike MassVet and ViewDroid, RevealDroid is capable of
accurately identifying the family to which a malware belongs,

and not just identifying an app as malicious. Furthermore,
RevealDroid is not limited to only detecting and identifying
families of repackaged malicious apps.

A variety of other techniques use different mechanisms for
detecting Android malware. DroidAnalytics [56] provides an
automated workflow for the collection and signature generation
of Android malware by analyzing apps at the opcode level.
AsDroid [31] detects stealthy behaviors of possibly malicious
apps characterized by mismatches between program behavior
and the UL Poeplau et al. [34] construct a static analysis tool
for identifying unsafe and malicious dynamic code loading.

Besides not identifying malware families, most of the
above techniques rely on heavyweight program analysis, unlike
RevealDroid’s lightweight analysis.

Several approaches focus on identifying specific malware
families. Apposcopy [25] provides a language to specify
malware signatures and a static analysis to identify apps
matching those signatures. For Apposcopy, security engineers
must manually construct malware signatures, which is a time-
consuming and error-prone task.

A few approaches automatically identify the family of
Android malware. Dendroid [41] utilizes text-mining techniques
and control-flow features to identify families of malicious
apps. DroidSIFT [53] employs extracted dependency graphs
to determine whether an app is benign or malicious, and the
family of a malicious app.

The two approaches that automatically identify the family of
Android malware—Dendroid and DroidSIFT—are both limited,
when compared to RevealDroid, in two key ways: (1) they
use a highly outdated malware dataset; and (2) they perform
a highly limited assessment for obfuscation resiliency, or no
such assessment at all. Both approaches are evaluated on a
limited number of malware families and apps, and use malware
datasets that are antiquated, dating back to 2011. On the
other hand, we evaluate RevealDroid on a dataset consisting
of thousands of more apps discovered up until early 2014,
and nearly double the malware families studied as part of
the DroidSIFT paper. Additionally, DroidSIFT utilizes flow
features, which are heavyweight to extract, as demonstrated in
our experiments.

Both techniques have limited obfuscation resiliency, and
rely on representations (e.g., control-flow features or constant
strings) that can be evaded by using standard automated
transformations. Furthermore, DroidSIFT is only assessed using
unstated obfuscations applied to a small number of apps from
a single malware family.

VII. CONCLUSION

This paper has introduced RevealDroid, a machine learning-
based approach for Android malware detection and family
identification that is accurate, efficient, and obfuscation resilient.
We have compared RevealDroid with state-of-the-research
and state-of-the-practice tools for Android malware detection.
Our experiments showcase RevealDroid’s superior accuracy
and efficiency, particularly under various obfuscations. We
further compared RevealDroid to a state-of-the-research family-
identification approach, demonstrating significantly higher
accuracy, especially in the face of obfuscations.

14

In the future, we intend to explore feature characteristics of
emerging malware apps—such as those that infect an Android
device’s Master Boot Record [11] and stealthily utilizing
devices to mine cryptocurrency services [2]—in order to
detect and identify the families of those malware. Additionally,
we further intend to explore lightweight feature-extraction
mechanisms to classify malware that leverages native code,
dynamic class loading, or reflection.

To enable replication of our results and improvement over
RevealDroid, we make our RevealDroid prototype and data
available online at [8].

REFERENCES

[1] Android trojan looks, acts like windows malware.
http://www.snoopwall.com/android-trojan-looks-acts-like-windows-
malware/.

[2] Bitcoin-mining malware reportedly found on google play.
http://www.cnet.com/news/bitcoin-mining-malware-reportedly-
discovered-at-google-play/.

[3] <blinded title for CC1>. <blinded URL>.

[4] <blinded title for CC2>. <blinded URL>.

[5] Cisco 2014 annual security report.
http://www.cisco.com/web/offers/lp/2014-annual-security-
report/index.html.

[6] F-droid. https:/f-droid.org/.

[71 Google play market. http://play.google.com/store/apps/.

[8] RevealDroid. http://tiny.cc/revealdroid.

[9] Server-side polymorphic android applications.
http://www.symantec.com/connect/blogs/server-side-polymorphic-
android-applications.

[10] The Drebin Dataset. http://user.informatik.uni-goettingen.de/ darp/-
drebin/.

[11] Threat description trojan:android/oldboot.a. https://www.f-secure.com/v-
descs/trojan_android_oldboot_a.shtml.

[12] VirusShare.com. http://www.virusshare.com/.

[13] VirusTotal. https://www.virustotal.com/.

[14] Quick Heal Annual Threat Report 2015.
http://www.quickheal.co.in/resources/threat-reports, January 2015.

[15] D. Aha and D. Kibler. Instance-based learning algorithms. Machine
Learning, 6:37-66, 1991.

[16] M. Alazab, V. Monsamy, L. Batten, P. Lantz, and R. Tian. Analysis of
malicious and benign android applications. In Distributed Computing
Systems Workshops (ICDCSW), 2012 32nd International Conference on,
pages 608-616. IEEE, 2012.

[17] A. Apvrille and R. Nigam. Obfuscation in android malware, and how
to fight back. Virus Bulletin, 2014.

[18] D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, K. Rieck, and
C. Siemens. Drebin: Effective and explainable detection of android
malware in your pocket. In Proc. of Network and Distributed System
Security Symposium (NDSS), 2014.

[19] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. Flowdroid: Precise context, flow, field,
object-sensitive and lifecycle-aware taint analysis for android apps. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, page 29. ACM, 2014.

[20] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,

and E. Bodden. Mining apps for abnormal usage of sensitive data.
To appear in the Proceedings of the 37th International Conference on
Software Engineering, 2015.

[21] A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus. Dexpler: converting
android dalvik bytecode to jimple for static analysis with soot. In
Proceedings of the ACM SIGPLAN International Workshop on State of

the Art in Java Program analysis, pages 27-38. ACM, 2012.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. Mast: Triage for
market-scale mobile malware analysis. In Proceedings of the Sixth ACM
Conference on Security and Privacy in Wireless and Mobile Networks,
WiSec 13, pages 13-24, New York, NY, USA, 2013. ACM.

K. Chen, P. Wang, Y. Lee, X. Wang, N. Zhang, H. Huang, W. Zou, and
P. Liu. Finding unknown malice in 10 seconds: Mass vetting for new
threats at the google-play scale. In 24th USENIX Security Symposium
(USENIX Security 15), pages 659—-674, Washington, D.C., Aug. 2015.
USENIX Association.

W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone
application certification. In Proceedings of the 16th ACM Conference on
Computer and Communications Security, pages 235-245. ACM, 2009.

Y. Feng, S. Anand, L. Dillig, and A. Aiken. Apposcopy: Semantics-based
detection of android malware through static analysis. In Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE 2014, pages 576-587, New York, NY, USA,
2014. ACM.

H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural detection
of android malware using embedded call graphs. In Proceedings of the
2013 ACM Workshop on Artificial Intelligence and Security, AlSec *13,
pages 45-54, New York, NY, USA, 2013. ACM.

A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior
against app descriptions. In Proceedings of the 36th International
Conference on Software Engineering, pages 1025-1035, New York, NY,
USA, 2014. ACM.

M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable
and accurate zero-day android malware detection. In Proceedings of
the 10th International Conference on Mobile Systems, Applications, and
Services, pages 281-294. ACM, 2012.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: an update. ACM Special
Interest Group on Knowledge Discovery and Data Mining (SIGKDD)
Explorations Newsletter, 11(1):10-18, 2009.

H. Huang, S. Zhu, P. Liu, and D. Wu. A framework for evaluating
mobile app repackaging detection algorithms. In Trust and Trustworthy
Computing, pages 169—186. Springer, 2013.

J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang. Asdroid: Detecting
stealthy behaviors in android applications by user interface and program
behavior contradiction. In Proceedings of the 36th International
Conference on Software Engineering, pages 10361046, New York,
NY, USA, 2014. ACM.

A. Moser, C. Kruegel, and E. Kirda. Exploring multiple execution
paths for malware analysis. In Security and Privacy, 2007. SP’07. IEEE
Symposium on, pages 231-245. IEEE, 2007.

H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy. Using probabilistic generative models for ranking risks of
android apps. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, pages 241-252. ACM, 2012.

S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna.
Execute this! analyzing unsafe and malicious dynamic code loading in
android applications. In Proceedings of the 20th Annual Network &
Distributed System Security Symposium (NDSS), 2014.

R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, San Mateo, CA, 1993.

S. Rasthofer, S. Arzt, and E. Bodden. A machine-learning approach for
classifying and categorizing android sources and sinks. In 2014 Network
and Distributed System Security Symposium (NDSS), 2014.

V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: evaluating
android anti-malware against transformation attacks. In Proceedings
of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, pages 329-334. ACM, 2013.

V. Rastogi, Y. Chen, and X. Jiang. Catch me if you can: Evaluating
android anti-malware against transformation attacks. Information
Forensics and Security, IEEE Transactions on, 9(1):99-108, Jan 2014.

A. Reina, A. Fattori, and L. Cavallaro. A system call-centric analysis
and stimulation technique to automatically reconstruct android malware
behaviors. European Workshop on Systems Security (EuroSec), April,
2013.

S. Russell and P. Norvig. Artificial intelligence: a modern approach.
199s.

15

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

(571

[58]

G. Suarez-Tangil, J. E. Tapiador, P. Peris-Lopez, and J. Blasco. Dendroid:
A text mining approach to analyzing and classifying code structures in
android malware families. Expert Systems with Applications, 41(4):1104—
1117, 2014.

K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro. Copperdroid: Automatic
reconstruction of android malware behaviors. In Proc. of the Symposium
on Network and Distributed System Security (NDSS), 2015.

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan.
Soot-a java bytecode optimization framework. In Proceedings of the
1999 conference of the Centre for Advanced Studies on Collaborative
research, page 13. IBM Press, 1999.

V. N. Vapnik and V. Vapnik. Statistical Learning Theory, volume 2.
Wiley New York, 1998.

T. Vidas, J. Tan, J. Nahata, C. L. Tan, N. Christin, and P. Tague. AS:
Automated analysis of adversarial android applications. In Proceedings
of the 4th ACM Workshop on Security and Privacy in Smartphones
& Mobile Devices, SPSM 14, pages 39-50, New York, NY, USA,
2014. ACM.

D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu. Droidmat:
Android malware detection through manifest and api calls tracing. In
Information Security (Asia JCIS), 2012 Seventh Asia Joint Conference
on, pages 62-69. IEEE, 2012.

M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu. Effective real-time android
application auditing. In IEEE Symposium on Security and Privacy, 2015.

E. P. Xing, M. I Jordan, R. M. Karp, et al. Feature selection for high-
dimensional genomic microarray data. In Proceedings of the Eighteenth
International Conference on Machine Learning, volume 1, pages 601—
608. Citeseer, 2001.

L.-K. Yan and H. Yin. Droidscope: Seamlessly reconstructing the os
and dalvik semantic views for dynamic android malware analysis. In
USENIX Security Symposium, pages 569-584, 2012.

Y. Yang and J. O. Pedersen. A comparative study on feature selection
in text categorization. In Proceedings of the Fourteenth International
Conference on Machine Learning, volume 97, pages 412-420, 1997.

Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. Appintent:
Analyzing sensitive data transmission in android for privacy leakage
detection. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 1043-1054. ACM, 2013.

F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu. Viewdroid: Towards
obfuscation-resilient mobile application repackaging detection. In
Proceedings of the 2014 ACM conference on Security and privacy
in wireless & mobile networks, pages 25-36. ACM, 2014.

M. Zhang, Y. Duan, H. Yin, and Z. Zhao. Semantics-aware android
malware classification using weighted contextual api dependency graphs.
In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1105-1116. ACM, 2014.

Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and
B. Zang. Vetting undesirable behaviors in android apps with permission
use analysis. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security, CCS ’13, pages 611-622,
New York, NY, USA, 2013. ACM.

M. Zheng, P. P. Lee, and J. C. Lui. Adam: an automatic and extensible
platform to stress test android anti-virus systems. In Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 82—-101.
Springer, 2013.

M. Zheng, M. Sun, and J. Lui. Droid analytics: A signature based
analytic system to collect, extract, analyze and associate android malware.
In Trust, Security and Privacy in Computing and Communications
(TrustCom), 2013 12th IEEE International Conference on, pages 163—
171. IEEE, 2013.

Y. Zhou and X. Jiang. Dissecting android malware: Characterization
and evolution. In Security and Privacy (SP), 2012 IEEE Symposium on,
pages 95-109. IEEE, 2012.

Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my
market: Detecting malicious apps in official and alternative android
markets. In Proceedings of Network and Distributed System Security
Symposium (NDSS), 2012.

