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Abstract—Modern mobile platforms rely on a permission
model to guard the system’s resources and apps. In An-
droid, since the permissions are granted at the granularity
of apps, and all components belonging to an app inherit
those permissions, an app’s components are typically over-
privileged, i.e., components are granted more privileges
than they need to complete their tasks. Systematic violation
of least-privilege principle in Android has shown to be the
root cause of many security vulnerabilities. To mitigate
this issue, we have developed DELDROID, an automated
system for determination of least privilege architecture in
Android and its enforcement at runtime. A key contribution
of our approach is the ability to limit the privileges granted
to apps without the need to modify them. DELDROID
utilizes static program analysis techniques to extract the
exact privileges each component needs for providing its
functionality. A Multiple-Domain Matrix representation of
the system’s architecture is then used to automatically
analyze the security posture of the system and derive its
least-privilege architecture. Our experiments on hundreds
of real-world apps corroborate DELDROID’s ability in
effectively establishing the least-privilege architecture and
its benefits in alleviating the security threats.

I. INTRODUCTION

Modern mobile platforms, such as Android, rely on

a permission-based model for controlling the resources

that each app is allowed to access. Permissions are often

granted to an app at the discretion of end user, who

makes a decision based on its perceived trustworthiness

and expected functionality.

Android’s permission-based access control model,

however, has shown to be ineffective in protecting sys-

tem resources and apps from security attacks [15]. All

components of an Android app inherit the permissions

granted to the app, regardless of whether they need those

permissions or not. As a result, a malicious component

inside an app, such as a third-party library, can leverage

privileges meant for other components for nefarious

purposes [29]. Moreover, by default, a component in An-

droid has significant leeway in terms of the components

it can communicate with, both within and outside of its

parent app. The over-privileged nature of components in

Android is the root cause of various security attacks [15],

[29], [11]. These kinds of attacks cannot be prevented by

the platform at the moment, as they do not violate the

security mechanisms supplied by Android.

To systematically thwart these threats, we have de-

veloped DELDROID1, an automated system for determi-

nation of least-privilege architecture (LP architecture)

in Android and its enforcement at runtime. An LP

architecture is one in which the components are only

granted the privileges that they require for providing their

functionality [37]. An LP architecture, thus, reduces the

risk of an Android system being compromised by limit-

ing its attacks surface. In addition, when a component is

compromised, the impact is localized within the scope of

that component. A smaller attack surface also facilitates

both manual and automated means of inspecting the

system’s security attributes.

Establishing the least privilege architecture is quite

challenging as it demands mediation of all conceiv-

able channels through which a component may interact

with components within and outside its parent app, as

well as the underlying system resources. DELDROID

leverages static program analysis to automatically iden-

tify the architectural elements comprising an Android

system, as well as the inter-component communication

and resource-access privileges each component needs

to provide its functionality. It then uses a Multiple-
Domain Matrix (MDM) [24] to represent and derive

the LP architecture for the system. MDM provides an

elegant, yet compact, representation of all relationships

between principal elements, such as components and

permissions, in a system. DELDROID further allows a

security expert to modify the architecture as needed

to establish the proper privileges for each component.

Finally, DELDROID enforces automatically obtained or

expert-supplied LP architecture at runtime, thus ensuring

components are not able to obtain more privileges than

that prescribed by the architecture.

DELDROID can be used to limit the levels of access

1The name is intended to abbreviate “determination and enforcement
of least privilege architecture in AnDroid”.
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available to an app and its components without modifi-

cation of their implementation logic, thus allowing our

approach to be applied to all existing Android apps. Our

evaluation of DELDROID using hundreds of real-world

apps corroborates its ability in significantly reducing the

attack surface of Android systems and thwarting security

attacks that would have succeeded otherwise.

The remainder of this paper is structured as follows.

Section II provides a background on Android’s access

control model. Section III presents an Android system to

motivate the research. Section IV describes DELDROID,

while Section V describes its implementation. The eval-

uation results are presented in Section VI. Finally, the

paper concludes with an overview of the related literature

and areas of future research.

II. ANDROID’S ACCESS CONTROL MODEL

This section provides an in-depth description of the

Android’s access control model to help the reader follow

the discussions that ensue. An Android system consists

of a set of apps running on a device. Each app in Android

consists of a set of software components. There are two

kinds of privileges a component has: inter-component
communication (ICC) privilege, allowing a component

to communicate with other components in the same or

different app, and resource access privilege, allowing a

component to access the system resources, such as GPS,

camera, telephony, etc.

A. Over-Privileged Inter-Component Communication

Each Android app includes a mandatory configuration

file, called manifest. It specifies, among other things,

the principal components that constitute the application,

including their types and capabilities, as well as required

and enforced permissions. Components are basic logical

building blocks of apps. Android defines four types of

components: Activity, Service, Broadcast Receiver, and

Content Provider. The components in Android mainly

communicate by means of Intent messages. An Intent

can be either explicit, in which case the target component
is specified, or implicit, in which case the action to be

performed is specified. Intent Filters are the provided in-

terfaces of a component and define the actions performed

by the component. An implicit Intent is delivered to a

component if the action specified in the Intent matches

that specified in the component’s Intent Filter.

Android’s ICC mechanism leads to over-privileged

architectures, where components needlessly have the

ability to send Intent messages to invoke services of

many other components within and outside their parent

apps, and receive a variety of Intent messages implicitly

exchanged in the system. A component is allowed to

communicate with (1) all components in its parent app,

(2) protected components in other apps as long as its

parent app has the required permissions, and (3) any

public (exported) component in other apps. A component

is public if its VISIBLE attribute is set to true in the

manifest file or declares at least one Intent Filter. Many

developers are not aware of the fact that by specifying

an Intent Filter for a component, Android by default

makes that component public, thus allowing components

from other apps to invoke its interfaces [15]. Inter-app

communication (IAC) privileges are thus often granted

implicitly. Finally, a component does not require a per-

mission to specify an Intent Filter with arbitrary action,

thereby allowing that component to receive all implicit

Intents exchanged in the system with the specified action.

The over-privileged ICC mechanisms in Android are

known to be the root cause of many security attacks [15],

[29], [11]. Moreover, comprehending the security posture

of an Android system in light of this privilege man-

agement scheme is rather tedious and error prone for

a security architect.

B. Over-Privileged Resource Access

Android contains a plethora of sensitive sys-

tem resources (e.g., GPS, camera, account man-

ager, power manager) accessed by obtaining a han-

dle to a system-level, long-running service (e.g.,

location service, camera service, account service,

power manager service). System services are launched

by com.android.server.SystemServer ser-

vice, which is started at the boot time of the An-

droid operating system. To use a system service,

a component should have the appropriate permission

that guards the service. For example, to track the

user’s location, a component needs to obtain a han-

dle to the location service, which requires the loca-

tion permission (either ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION).

Permissions are the cornerstone of the Android secu-

rity model. The permissions stated in the app manifest

enable secure access to sensitive resources. However,

a permission granted to an app transfers to all of the

components in the app. Android’s coarse-grained permis-

sion model violates the principle of least privilege [14],

[35], as often not all components of an app need access

to the same sensitive resources. The shortcomings of

Android’s permission model have been widely discussed

in the literature [34], [19], [18], and shown to be the root

cause of various security attacks, most notably privilege

escalation [17], [20].

III. ILLUSTRATIVE EXAMPLE

To further motivate our research and illustrate our ap-

proach, we provide an example of a malicious component

that employs the extra privileges afforded by Android to

launch two security attacks: information leakage through
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Listing 1. Vulnerable component, Sender Service, sends a text message.
1 public class Sender extends Service {
2 ...
3 public int onStartCommand(Intent intent, int flags, int startId){
4 //if (checkCallingPermission("android.permission.SEND_SMS") == PackageManager.PERMISSION_GRANTED) {
5 String phoneNumber = intent.getStringExtra("PHONE_NUMBER");
6 String msg = intent.getStringExtra("MSG_CONTENT");
7 SmsManager smsManager = SmsManager.getDefault();
8 smsManager.sendTextMessage(phoneNumber, null, msg, null, null);
9 //}

10 ...

Listing 2. Malicious component, LevelUp Service, uses dynamic class loading to hide its malicious behavior.
1 public class LevelUp extends Service {
2 ...
3 public int onStartCommand(Intent intent, int flags, int startId){
4 ...
5 loadCode();
6 }
7 public void loadCode(){
8 // read a jar file that contains classes.dex file.
9 String jarPath=Environment.getExternalStorageDirectory().getAbsolutePath()+"/Download/hiddenCode.jar";

10 //load the code
11 DexClassLoader mDexClassLoader = new DexClassLoader(jarPath, getDir("dex", MODE_PRIVATE).

getAbsolutePath(),null, getClass().getClassLoader());
12 //use java reflection to load a class and call its method
13 Class<?> loadedClass = mDexClassLoader.loadClass("HiddenBehavior");
14 Method methodGetIntent = loadedClass.getMethod("getIntent", android.content.Context.class);
15 Object object = loadedClass.newInstance();
16 Intent intent = (Intent) methodGetIntent.invoke(object, LevelUp.this);
17 startService(intent);
18 ...

Listing 3. Code downloaded after initial installation of app.
1 public class HiddenBehavior {
2 ...
3 public Intent getIntent(Context context){
4 LocationManager locMgr = (LocationManager) context.getSystemService(Context.LOCATION_SERVICE);
5 Location loc = locMgr.getLastKnownLocation(LocationManager.GPS_PROVIDER);
6 String msg = loc.getLatitude()+","+loc.getLongitude();
7 Intent i = new Intent("SEND_SMS");
8 i.putExtra("PHONE_NUMBER", phoneNumber);
9 i.putExtra("MSG_CONTENT", msg);

10 return i;
11 }
12 }

Figure 1. Component-based architecture of a vulnerable Android
system.

hidden code [29], [15], and privilege escalation [20],

[11].

Figure 1 shows an Android system with two apps:

FunGame and Messaging. The Messaging app

contains three components. The ListMsgs Activity

lists all previously received messages. The Composer
Activity allows a user to compose and send text messages

using the Sender Service running in the background.

Sending text messages requires SMS permission. The

Messaging app has this permission and hence all its

components have it as well. Listing 1 shows part of the

Sender’s program logic for sending text messages.

LevelUp is a Service in FunGame, a malicious

Android game app, which once started, via the Main
Activity, leverages dynamic class loading feature of

Android to load a malicious behavior from an exter-

nal JAR file placed at the location specified on line

9 of Listing 2. The dynamically loaded code allows

LevelUp to communicate with the Sender Service as

shown in Listing 2. On line 11 of Listing 2, LevelUp
instantiates a DexClassLoader object and uses it

to load the DEX (Dalvik Executable) file contained

in the JAR file. Using Java reflection at line 13 of

Listing 2, the mDexClassLoader object loads a class

called HiddenBehavior and invokes getIntent
method at line 16 of Listing 2. This method returns an

implicit Intent, which LevelUp uses to communicate

with Sender, as shown in line 17 of Listing 2.

Listing 3 shows the implementation of getIntent
method in the HiddenBehavior class. On line 4,

getIntent obtains a reference to the Location
Manager, a service that provides periodic updates of the
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Figure 2. Overview of DELDROID.

device’s geographical location. On line 5, the Location
Manager is used to get the user’s last known location.

Finally, in lines 7-9, it creates an implicit Intent and

adds a phone number and the user’s location as the extra

payload of the Intent. This code is compiled to a DEX

format and archived in a JAR file using the dx tool, a

tool that generates Android bytecode from .class files.

The JAR file could be downloaded by the malicious app

after installation.

On lines 5 and 6 of Listing 1, the Sender service

extracts the phone number and the location information

from the received Intent, respectively. The extracted

information is used in line 8 to send a text message.

The Sender component is vulnerable to a privilege

escalation attack since it performs a privileged task,

sending text messages, without checking if the caller

component has the required SMS permission to perform

the task. An example of such a check is shown in line 4

of Listing 1, but in this example it is commented.

The illustrative example described in this section al-

lows LevelUp to hide its malicious behavior to exploit

a privilege escalation vulnerability and leak the user’s

sensitive information (i.e., user’s location) via text mes-

saging without having the SMS permission. This kind of

an attack is neither effectively detectable through static

program analysis, since the malicious behavior is down-

loaded after installation, nor through dynamic program

analysis, as malicious apps often incorporate complicated

evasion tactics (e.g., timing-bombs [16]). We show how

through establishment of an LP architecture, DELDROID

can effectively mitigate such threats.

IV. APPROACH

As depicted in Figure 2, DELDROID consists of five

steps. The rest of this section presents each step in detail.

A. Step 1: Architectural Elements Extractor

To obtain the system’s architecture, we first need to

determine the principal components that constitute the

system, their properties, communication interfaces, and

permission usages. Such information is obtained from

two sources, an app’s manifest file and its bytecode.

DELDROID utilizes APKtool [3], a reverse engineer-

ing tool for Android APK files, to recover an app’s

manifest file. By simply parsing the manifest file, we

can extract certain information readily available about

the components comprising an app. Table I partially

shows the extracted information corresponding to our

running example (recall Section III). The Type column

represents the particular type of a component, which

could be either Activity, Service, Broadcast Receiver,

or Content Provider. The Exported column indicates

whether a component can be launched from outside its

hosting app or not. The Intent Filter column shows the

interfaces provided by a component. Finally, the Granted
column shows the permissions requested by an app, and

subsequently granted by Android to all of its component.

Not all information about an app can be obtained from

its manifest file. For example, Broadcast Receivers can

be registered in code without declaring them in the man-

ifest file. Components can also programmatically define

Intent Filters in code. In addition, all ICCs are latent in

the app’s bytecode. Components can communicate with

one another in two ways: (1) using Unified Resource

Identifiers (URIs) to access the encapsulated data in

Content Providers, and (2) by sending Intents, either

explicitly or implicitly. DELDROID utilizes IC3 [28] to

analyze each app in the system and extract such latent

information from its bytecode. IC3 is the state-of-the-art

static program analysis tool for Android. For each Intent

in bytecode, DELDROID extracts the sender component,

receiver component, action, categories, and data. Table I

shows the remaining information collected in this way

for our running example. Intent i3 is not shown, since

the program logic that creates that Intent is not initially

part of the FunGame (recall Listing 2).

DELDROID also identifies the permissions actually

used by components. These are the permissions that

a component uses for (1) accessing a protected Con-

tent Provider, or (2) calling a protected API. For the

former, we have created a mapping between protected

Content Providers and the required permissions. For

example, to read the contacts information from An-

droid’s Contacts Content Provider, a component needs

android.permission.READ_CONTACTS permis-

sion. Since IC3 does not extract the permissions used

through API calls, for the latter case, DELDROID lever-

ages PScout permission map [10], one of the most

recently updated and comprehensive permission maps

available for the Android framework. It specifies map-
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Table I
THE EXTRACTED ARCHITECTURAL ELEMENTS FOR THE ANDROID SYSTEM SHOWN IN FIGURE 1

ID App
Component

Type Exported
Intent Permissions

Intents
Name Filter Granted Used Enforced

1 Messaging ListMsgs Activity Yes {SMS}
2 Messaging Composer Activity Yes {SMS} {i1}
3 Messaging Sender Service Yes SEND SMS {SMS} {SMS}
4 FunGame LevelUp Service No {Location}
5 FunGame Main Activity Yes MAIN {Location} {i2}

Figure 3. The Original architecture derived from the Android system
described in Section III.

pings between Android API calls/Intents and the per-

missions required to perform those calls. For exam-

ple, Sender component in Messaging app uses the

sendTextMessage() API for sending text messages

(see line 8 of Listing 1), which requires SMS permission.

We thus consider this to be a permission that is actually

used by this component, as shown in the Used column

of Table I

Finally, DELDROID builds on our prior work [11] to

extract the permissions enforced by a component at two

levels. While the coarse-grained permissions specified in

the manifest file are enforced by the Android runtime

environment over an entire component, it is possible to

add permission checks, such as checkCallingPermission,

throughout the code controlling access to specific parts

of a component (see line 4 of Listing 1). DELDROID

identifies both types of checks. Since the system of

Figure 1 does not perform any checks (line 4 of Listing 1

is commented out), the corresponding column in Table I

is empty.

B. Step 2: Privilege Analyzer

The next step is to derive the overall system architec-

ture from the information obtained for individual com-

ponents in the previous step. We call this the Original
system architecture, as it represents the architecture of

system if it were to be deployed on the official Android

runtime environment. DELDROID models the system

architecture as a Multiple-Domain Matrix (MDM) [24].

MDM provides an elegant representation of complex

systems with multiple concerns (domains). Each concern

is modeled as a Design-Structure Matrix (DSM) [36]—

a simple matrix that captures the dependencies of one

relationship type. MDM is formed by connecting the

DSMs together. We capture four domains in an MDM

to represent an Android system’s architecture for the

purpose of privilege analysis.

The communication domain shows all potential com

ponent-to-component interactions. Each non-empty cell

in this domain indicates the fact that the architecture of

system allows for potential interaction between two com-

ponents. Rows represent sender components; columns

represent receiver components. Allowed communications

are derived using the following rule.

Definition 1 (Allowed Communication). Let E be a
set of all exported components, and c1 and c2 be two
arbitrary components in the system. We say that c1 can
communicate with c2, if either both components belong
to the same app or c2 is an exported component and c1
is granted the permissions enforced by c2:
communicate(c1, c2) ≡ (appc1 = appc2) ∨ (c2 ∈ E ∧
enforcedc2 ⊆ grantedc1)

Figure 3 shows the result of applying Definition 1

to Table I. According to the communication domain,

components 1, 2, and 3 can communicate with one

another because they belong to the same app, as well

as component 5 since it is exported, but not component

4.

Note that the communication domain also includes

interactions between the Android framework and com-

ponents of third-party apps. Android provides over 230

protected broadcast Intents that can only be sent by the

system to the registered components. For example, when

a user installs an app, the system sends a broadcast Intent

including the package name of the newly installed app

to all components that listen to the PACKAGE ADDED

broadcast Intent action. Figure 3 shows no such interac-

tions with the system, as no component in our running

example is registered to receive protected broadcast In-

tents.

The three permission domains in the MDM model of

Figure 3 represent the component-to-permission relation-

ships. Each non-empty cell corresponds to a permission

that is either (1) granted to a component, meaning that

the component has that permission, as its hosting app

has requested the permission in its manifest file, (2) used

by a component, meaning that the component is actually

making API calls or interacts with other apps that require
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Figure 4. LP architecture determined from the Android system
described in Section III.S

the permission, or (3) enforced by a component, meaning

that either the Android runtime environment or the com-

ponent itself check the permission of callers (as you may

recall from Section IV-A there are two ways of enforcing

permissions in Android). The permission domains in the

MDM are populated based on the information obtained in

the first step (i.e., Granted, Used, and Enforced columns

of Table I).

C. Step 3: Privilege Reducer

The Original architecture derived in the previous step

clearly violates the principle of least privilege. This step

aims to derive the LP architecture by granting only the

privileges required by each component to fulfill its tasks.

DELDROID uses the extracted inter-component com-

munications (information in the Intents column of Ta-

ble I) to determine the communication privileges that

are needed for each component to provide its func-

tionality, and removes communication privileges that

are unnecessary. For instance, as shown in Figure 4,

the LP architecture allows the Composer component

to communicate with the Sender component to send

text messages (indicated by “1” in row 2, column 3).

On the other hand, the LP architecture prohibits the

LevelUp component to communicate with the Sender
component.

Furthermore, DELDROID reduces the granted permis-

sions for each component in the Permission Granted

Domain of the LP architecture using the following rule:

Definition 2 (Required Permission). Let c1 be a compo-
nent, and usedc1 be a set of permissions directly used
by component c1. We define the required permissions for
c1 as permissions either directly used by c1 or used by
component c2 with which c1 communicates:
requiredPermissionsc1 = {p : Permission | ∃ c2 :
Component • p ∈ usedc1 ∨ communicate(c1, c2)∧ p ∈
usedc2 ∧ p ∈ grantedc1}

According to Definition 2, a component legitimately

needs a permission in two cases: 1) the permission is

directly used by the component through, among other

things, making protected API calls; 2) another compo-

nent with which the given component is interacting is

using that permission. The latter may be a legitimate

case, since a component that uses a permission may re-

quire the calling component to also have that permission.

In fact, failing to check if the calling component has the

necessary permission may result in a privilege escalation

attack, as discussed in the next section.

In our running example, DELDROID determines that

the Sender component has a legitimate reason to hold

the SMS permission, since it uses it. The Composer
component also has a legitimate reason to hold the SMS
permission, since the app it belongs to has that permis-

sion and it communicates with the Sender component

that uses that permission. ListMsgs, however, does

not need the SMS permission, since it neither uses it

nor does it communicate with a component that uses

that permission. Similarly, the LevelUp and Main
components do not use the Location permission, and thus

do not have a legitimate reason to hold it.

Finally, a security architect can adjust the resulting

architecture by manually granting and revoking permis-

sions in the MDM. For example, a security architect can

revise the privileges granted to apps and their compo-

nents based on their reputation. This capability could

also be useful in a forward-engineering setting, where

an Android system is developed from scratch.

D. Step 4: Security Analyzer

The previous sections present derivation of the LP

architecture for an Android system captured in an MDM.

Here, we describe how the resulting architecture can be

used to effectively perform security analysis of Android

apps. In particular, we focus on one of the most promi-

nent vulnerabilities due to the interaction of multiple

apps, i.e., privilege escalation, defined as follows:

Definition 3 (Privilege Escalation). Let p be a permis-
sion, cm be a component that does not hold p, and cv be
a component that holds and uses p but does not enforce
(check) the components that may be using its services
also hold p. In the privilege escalation attack, cm is able
to indirectly obtain p by interacting with cv .
communicate(cm, cv)∧p ∈ usedcv ∧p �∈ grantedcm∧
p �∈ enforcedcv

According to Definition 3, in privilege escalation, a

malicious app is able to indirectly perform a privileged

task, without having a permission to do so, by inter-

acting with a component that possesses the permission.

By applying the privilege escalation rule to the MDM

representation of the system’s architecture, DELDROID

identifies communications that may result in privilege

escalation attack.

To illustrate this, let us assume that instead of

LevelUp using dynamic class loading to communi-

cate with the Sender component, the logic for this

interaction is part of the component’s implementation

analyzed by DELDROID. The LP architecture for such
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Figure 5. The LP architecture for an alternative system, where the
communication between Sender and LevelUp is part of the app’s initial
bytecode.y

an alternative system is shown in Figure 5. Applying

the privilege escalation rule to the LP architecture of

Figure 5 reveals that LevelUp is not granted the SMS

permission, and communicates with the Sender that

uses the SMS permission without enforcing it. As a

result, this interaction is potentially a privilege escalation

attack, and DELDROID raises a warning for further

inspection.

E. Step 5: LP Enforcer

This step regulates component interactions by enforc-

ing the LP architecture at runtime. DELDROID trans-

forms the LP architecture to a set of Event-Condition-

Action (ECA) rules suitable for rapid evaluation as the

system executes. It then relies on two components, i.e.,

ICC Monitor and Resource Monitor, within the Privilege

Manager layer that we have added to the Android runtime

environment, as shown in Figure 2.

1) ICC Monitor: This component extends the capabil-

ities of the Android framework by intercepting each ICC

transaction passed to the ActivityManager—an Android

component that administers the ICC transactions—to

check whether the transaction is allowed to run or not.

Specifically, DELDROID extends the ActivityManager
to send the ICC transaction’s information to the ICC
Monitor component and executes the action provided by

ICC Monitor. In case, an ICC is prevented, ICC Monitor
records the transaction for further inspection by a security

analyst.

For example, the following ECA rule is produced,

from the LP architecture shown in Figure 4, to prevent

the LevelUp component from communicating with the

Sender component:

Event: i ∈ ICC occurs

Condition: i.senderPkg = FunGame ∧
i.senderComp = LevelUp ∧ i.receiverPkg =
Messaging
Action: prevent

2) Resource Monitor: As we explained in Sec-

tion II-B, components need permissions to access various

system resources. Such system resources are accessed

via the Context component, an Android component that

holds information about the application environment

and controls access to resources. DELDROID modifies

Context to extract information from each resource access

request, and passes it to the Resource Monitor to check

whether the requester is allowed to access the requested

service.

As a concrete example, the following ECA rule is

produced, from the LP architecture shown in Figure 4, to

prevent LevelUp from requesting the location service:

Event: resourceaccessrequest
Condition: requester = LevelUp ∧ service =
Context.LOCATION_SERVICE
Action: prevent

When the LevelUp component executes the dynam-

ically loaded code shown in Listing 3, it tries to obtain

a handle to the LocationManager service (recall line 4

of Listing 3). The Android framework dispatches the re-

quest to the Context, which then sends the request to the

Resource Monitor. Upon receiving the resource access

request, Resource Monitor checks it against the ECA

rules and performs the corresponding action (prevents

the request in this particular case).

V. IMPLEMENTATION

DELDROID is a Java application that takes as input

an Android system consisting of a set of APK files. As

described earlier, the architecture extraction capability

was built on top of several prior static program anal-

ysis tools [28], [10], [11]. Each tool provides specific

information that DELDROID uses to tailor the LP ar-

chitecture. After that, DELDROID conducts a security

analysis on the established LP architecture and records

the security vulnerabilities that are found. The derived

LP architecture and results of analysis are stored in a

comma separated values (CSV) file. The implementation

of DELDROID consists of more than 4,000 lines of code

(LOC), not counting the existing tools on which it relies.

The enforcement mechanism in DELDROID is im-

plemented on top of the Android Open-Source Project

(AOSP) [2] version 6 (Marshmallow), API level 23.

AOSP is the open-source repository for Android system

maintained by Google. The Privilege Manager Layer
introduced a new package in the Android runtime en-

vironment. We also modified other components such as

ActivityManager and ContextWrapper. The total frame-

work changes account for approximately 400 LOC. The

changes were made such that any existing Android app

could continue to run in our version of Android runtime

environment without modification. We have successfully

installed the modified Android system image on a Nexus

5X phone and on the Android emulator using Android

Fastboot tools [6] and Android debug bridge [1].

VI. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of

DELDROID. Our evaluation addresses the following re-
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Table II
SUMMARY OF THE APP BUNDLES AND THE ATTACK SURFACE OF BOTH ORIGINAL AND LP ARCHITECTURE.

Bundle Components
Intent Intent Communication Domain Permission Granted Domain Priv. Esca. Security Analysis

Explicit Implicit Filter Original LP Reduction (%) Original LP Reduction (%) Original LP

Bundle 1 306 344 79 176 29,031 42 99.86 1,642 45 97.26 25,944 0

Bundle 2 432 468 379 287 78,237 625 99.20 2,954 61 97.94 35,601 110

Bundle 3 422 574 212 200 65,709 173 99.74 2,510 54 97.85 22,721 2

Bundle 4 449 348 370 511 80,372 205 99.74 4,234 78 98.16 33,551 0

Bundle 5 353 304 277 292 56,868 345 99.39 1,536 51 96.68 26,914 2

Bundle 6 541 890 476 4919 85,556 661 99.23 4,461 181 95.94 24,745 2

Bundle 7 562 412 38 324 82,863 137 99.83 1,577 58 96.32 15,503 1

Bundle 8 362 417 267 242 50,208 250 99.50 1,946 24 98.77 27,663 14

Bundle 9 265 180 98 166 25,817 129 99.50 1,568 30 98.09 19,428 8

Bundle 10 421 322 1231 185 50,001 74 99.85 2,386 28 98.83 16,953 3

Average 411.3 425.9 342.7 730.2 60,466.2 264.1 99.58 2,481.4 61.0 97.58 24,902.3 14.2

Avg. (per app) 13.7 14.2 11.4 24.3 2,015.5 8.8 99.56 82.7 2.0 97.54 498.0 0.3

search questions:

• RQ1. How effective is DELDROID in reducing the

attack surface of Android systems and aiding the

architect with understanding their security posture?

• RQ2. How effective is DELDROID in detecting and

preventing security attacks in real-world apps?

• RQ3. What is the performance of DELDROID?

We downloaded a total of 984 apps in our experiments

coming from three different datasets representing benign,

vulnerable, and malicious apps. The benign dataset is

a collection of 370 apps, randomly selected from the

Google Play store. The second dataset is a collection of

389 vulnerable apps identified in prior literature [23].

Finally, the malware dataset contains 225 apps obtained

from various malware repositories [40], [4], [26].

A. Attack Surface Reduction

By reducing the privileges granted to software com-

ponents, DELDROID helps the security architects (or

automated analysis tools) to focus their analysis effort on

a narrowed set of interactions. To evaluate the degree to

which DELDROID reduces the attack surface of Android

systems, we ran DELDROID on 10 bundles of apps, each

containing 30 apps. We chose this number of apps, since

it represents the average number of apps a smartphone

user regularly uses per month, as shown in a recent

study [8]. Each bundle contains apps randomly selected

from the app datasets as follows: 24 benign apps, 3

vulnerable apps, and 3 malicious apps.

Table II shows the structure of the bundles, including

the number of entries in the Communication Domain

as well as the Permission Granted Domain for both the

Original and LP architectures. For example, in bundle 1,

the LP architecture contains 42 inter-app communication

(IAC) and 45 resource access permissions, whereas the

Original architecture contains 29,031 IAC and 1,642 re-

source access privileges. On average, across all bundles,

99.56% of IAC and 97.54% of resource access privileges

are reduced.

Table II also shows the number of potential inter-

app privilege escalation attacks in both the Original and

LP architectures. For example, in bundle 5, the Original

architecture contains 26,914 possible privilege escalation

attacks, whereas the LP architecture contains only 2 such

attacks that need investigation. On average, an analyst

needs to verify 14 potential security issues for a bundle

of 30 apps using our approach. In fact, in the case of

bundles 1 and 4, all potential privilege escalation attacks

are already resolved with the LP architecture, eliminating

the need for further investigation.

The results confirm the effectiveness of our approach

in reducing the attack surface and hence reducing the

effort required to assess the security properties of an

Android system.

B. Attack Detection and Prevention

To evaluate DELDROID’s ability to detect and prevent

security attacks, we used 54 malicious and vulnerable

apps for which the steps and inputs required to create the

attacks were known. In total, the resulting combination

of apps had 18 privilege escalation and 24 dynamically

loaded ICC attacks. We created a bundle of these 54 apps,

ran DELDROID to obtain and analyze the LP architecture,

and deployed the apps on our version of Android runtime

environment. We then exercised the apps to create the

attacks and determined whether DELDROID was able to

prevent them. We report on the precision and recall of

both detection and prevention.

DELDROID marked 19 inter-app communications as

potential privilege escalation attacks, correctly detecting

18 attacks, i.e., true positive. Our manual inspection of

the behavior that was wrongly classified as an attack

showed that this was due to the shortcomings of the

underlying static program analysis tools used in DEL-

DROID. In particular, since the analysis tools relied

upon in our work are not path-sensitive, DELDROID

is bound to over-approximate the behavior of Android

architectures, sometimes leading to such false positive
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Table III
DELDROID’S OFFLINE PERFORMANCE.

Recovery LP Determination Analysis ECA Rules
(min) (sec) (sec) (sec)

Average 69.5 1.61 0.002 0.45

Std Dev 2.7 0.69 0.001 0.99

outcomes. Overall, DELDROID achieves 94.7% precision

and 100% recall in detection of privilege escalation

attacks. Given DELDROID’s reliance on static program

analyses, it is unable to detect security attacks launched

via dynamically loaded code. In spite of that, as shown

next, our experiments show that such attacks are effec-

tively thwarted by an LP architecture.

To evaluate DELDROID’s ability to thwart security

attacks, we configured DELDROID to prevent all 19

detected privilege escalation attacks during the analysis

step. We then manually exercised all known privilege

escalation (19 cases) and dynamically loaded ICC (24

cases) attacks. DELDROID was able to prevent all of the

attacks from succeeding by intercepting either the ICC

or resource access calls. However, one of the prevented

ICCs was a legitimate communication that corresponded

to the erroneously detected privilege escalation attack.

Overall, DELDROID achieves 97.7% precision and 100%

recall in prevention of security attacks.

C. Performance

We measured the execution time of running DEL-

DROID on the 10 bundles of app shown in Table II. These

experiments were conducted on a MacBook Pro with 2.2

GHz Intel Core i7 processor and 16 GB DDR3 RAM.

We repeated our experiments 33 times to achieve a 95%

confidence interval. Table III summarizes the results. On

average, for an Android system with 30 apps, it takes

less than 70 minutes to execute DELDROID and obtain

the ECA rules, but the great majority of this time is spent

in the one-time effort of recovering the architecture of

system from its implementation artifacts. A less precise

but more efficient forms of program analysis could be

substituted for architecture recovery, at the expense of a

higher rate of false positives.

To evaluate the runtime overhead of DELDROID, we

measured the time it takes to check the ECA rules for

an intercepted ICC. To that end, we created a script that

sends 363 requests (e.g., start an app, click a button)

to an Android system, simulating its use. Each request

causes the system to perform an ICC of some sort. We

found that, on average, the performance overhead is 25

milliseconds with 10 milliseconds standard deviation.

Most users cannot perceive delays of this magnitude,

per Android development guidelines [7], and thus, we

believe DELDROID poses an acceptable overhead.

VII. RELATED WORK

A large body of research [15], [9], [25], [20], [21],

[13], [27] has focused on Android security. Here, we

provide a discussion of the related efforts in light of our

research.

Numerous techniques have been developed for ICC

analysis [22], [23], [39], [11]. DidFail [22] introduces an

approach for tracking data flows between Android com-

ponents. IccTA, similarly, leverages an intent resolution

analysis to identify inter-component privacy leaks [23].

Along the same line, COVERT [11] presents an approach

for compositional analysis of Android inter-app vulnera-

bilities. While these research efforts are concerned with

the analysis of information/permission leakage between

Android apps, they do not really address the problem

that we are addressing, namely the automated detection

and dynamic enforcement of least-privilege architecture

in Android. DELDROID, to our knowledge, is the first

tool with this capability.

Others have focused on enforcing policies at run-

time [12], [33], [38]. SEPAR [12] provides an automatic

scheme for formal synthesis and enforcement of Android

inter-component security policies. Kynoid [33] performs

a dynamic taint analysis over a modified version of

Dalvik VM. DeepDroid [38] presents an enforcement

extensions based on dynamic memory instrumentation

of system processes. These research efforts share with

ours the emphasis on dynamic enforcement of security

policies. Our work differs fundamentally in its emphasis

on both providing an architectural solution and allowing

a security architect to adjust the privileges at the archi-

tectural level.

Schmerl et al. [32] describe an architectural style

for Android in ACME that, among other capabilities,

supports analysis of certain security properties. Unlike

DELDROID, their work does not provide a mechanism

for determining the LP architecture, nor does it provide

any runtime enforcement mechanism.

Finally, the importance of enforcing the principle of

least privilege was introduced in the seminal work of

Saltzer et al. [30], and is well recognized by many

researchers. Notably, Scandariato et al. [31] lays the

formal definition of the least privilege violation and

provides a technique to identify such violation in UML

models. To the best of our knowledge, DELDROID is

the first solution capable of automatically recovering the

architecture of an Android system to derive and enforce

an LP variant of it.

VIII. CONCLUSION

This paper presents DELDROID, an automated ap-

proach for determining the least-privilege architecture for

an Android system and its enforcement at runtime. The

least-privilege architecture narrows the attack surface
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of an Android system, making it easier to evaluate its

security posture, and thwarts certain class of security

attacks. Our experiments on hundreds of real-world apps

show between 97% to 99% reduction of attack surface

and the ability to thwart security attacks exploiting the

over-privileged nature of Android with a recall of 100%

and a precision of 97%.

Rather than preventing all dynamically loaded ICCs,

an avenue of future work is leveraging techniques that

can check the integrity of loaded code [29]. Moreover,

static analysis tools including the ones that DELDROID

leverages [28], [11], [9] cannot analyze obfuscated apps.

Our future work involves integration of dynamic analysis

techniques to mitigate limitations of a purely static

approach for recovering the system’s architecture.

Our research artifacts, including tools and evaluation

data, are available publicly [5].
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